gcloud beta vector-search collections update

NAME
gcloud beta vector-search collections update - update a collection
SYNOPSIS
gcloud beta vector-search collections update (COLLECTION : --location=LOCATION) [--async] [--data-schema=DATA_SCHEMA] [--description=DESCRIPTION] [--display-name=DISPLAY_NAME] [--request-id=REQUEST_ID] [--schema=SCHEMA] [--labels=[LABELS,…]     | --update-labels=[UPDATE_LABELS,…] --clear-labels     | --remove-labels=REMOVE_LABELS] [--vector-schema=[VECTOR_SCHEMA,…]     | --update-vector-schema=[UPDATE_VECTOR_SCHEMA,…] --clear-vector-schema     | --remove-vector-schema=REMOVE_VECTOR_SCHEMA] [GCLOUD_WIDE_FLAG]
DESCRIPTION
(BETA) Update a collection.
EXAMPLES
To update a collection my-collection in project my-project and location us-central1, run:
gcloud beta vector-search collections update my-collection --location=us-central1 --display-name='My Updated Collection' --project=my-project
POSITIONAL ARGUMENTS
Collection resource - Identifier. name of resource The arguments in this group can be used to specify the attributes of this resource. (NOTE) Some attributes are not given arguments in this group but can be set in other ways.

To set the project attribute:

  • provide the argument collection on the command line with a fully specified name;
  • provide the argument --project on the command line;
  • set the property core/project.

This must be specified.

COLLECTION
ID of the collection or fully qualified identifier for the collection.

To set the collection attribute:

  • provide the argument collection on the command line.

This positional argument must be specified if any of the other arguments in this group are specified.

--location=LOCATION
The location id of the collection resource.

To set the location attribute:

  • provide the argument collection on the command line with a fully specified name;
  • provide the argument --location on the command line.
FLAGS
--async
Return immediately, without waiting for the operation in progress to complete.
--data-schema=DATA_SCHEMA
JSON Schema for data. Field names must contain only alphanumeric characters, underscores, and hyphens.
--description=DESCRIPTION
User-specified description of the collection
--display-name=DISPLAY_NAME
User-specified display name of the collection
--request-id=REQUEST_ID
An optional request ID to identify requests. Specify a unique request ID so that if you must retry your request, the server will know to ignore the request if it has already been completed. The server will guarantee that for at least 60 minutes since the first request.

For example, consider a situation where you make an initial request and the request times out. If you make the request again with the same request ID, the server can check if original operation with the same request ID was received, and if so, will ignore the second request. This prevents clients from accidentally creating duplicate commitments.

The request ID must be a valid UUID with the exception that zero UUID is not supported (00000000-0000-0000-0000-000000000000).

--schema=SCHEMA
Deprecated: JSON Schema for data. Please use data_schema instead.
Update labels.

At most one of these can be specified:

--labels=[LABELS,…]
Set labels to new value. Labels as key value pairs.
KEY
Keys must start with a lowercase character and contain only hyphens (-), underscores (_), lowercase characters, and numbers.
VALUE
Values must contain only hyphens (-), underscores (_), lowercase characters, and numbers.
Shorthand Example:
--labels=string=string

JSON Example:

--labels='{"string": "string"}'

File Example:

--labels=path_to_file.(yaml|json)
Or at least one of these can be specified:
--update-labels=[UPDATE_LABELS,…]
Update labels value or add key value pair. Labels as key value pairs.
KEY
Keys must start with a lowercase character and contain only hyphens (-), underscores (_), lowercase characters, and numbers.
VALUE
Values must contain only hyphens (-), underscores (_), lowercase characters, and numbers.
Shorthand Example:
--update-labels=string=string

JSON Example:

--update-labels='{"string": "string"}'

File Example:

--update-labels=path_to_file.(yaml|json)
At most one of these can be specified:
--clear-labels
Clear labels value and set to empty map.
--remove-labels=REMOVE_LABELS
Remove existing value from map labels. Sets remove_labels value. Shorthand Example:
--remove-labels=string,string

JSON Example:

--remove-labels=["string"]

File Example:

--remove-labels=path_to_file.(yaml|json)
Update vector_schema.

At most one of these can be specified:

--vector-schema=[VECTOR_SCHEMA,…]
Set vector_schema to new value. Schema for vector fields. Only vector fields in this schema will be searchable. Field names must contain only alphanumeric characters, underscores, and hyphens.
KEY
Sets KEY value.
VALUE
Sets VALUE value.
denseVector
Dense vector field.
dimensions
Dimensionality of the vector field.
vertexEmbeddingConfig
Configuration for generating embeddings for the vector field. If not specified, the embedding field must be populated in the DataObject.
modelId
Required: ID of the embedding model to use. See https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#embeddings-models for the list of supported models.
taskType
Required: Task type for the embeddings.
textTemplate
Required: Text template for the input to the model. The template must contain one or more references to fields in the DataObject, e.g.: "Movie Title: {title} ---- Movie Plot: {plot}".
sparseVector
Sparse vector field.
Shorthand Example:
--vector-schema=string={denseVector={dimensions=int,vertexEmbeddingConfig={modelId=string,taskType=string,textTemplate=string}},sparseVector}

JSON Example:

--vector-schema='{"string": {"denseVector": {"dimensions": int, "vertexEmbeddingConfig": {"modelId": "string", "taskType": "string", "textTemplate": "string"}}, "sparseVector": {}}}'

File Example:

--vector-schema=path_to_file.(yaml|json)
Or at least one of these can be specified:
--update-vector-schema=[UPDATE_VECTOR_SCHEMA,…]
Update vector_schema value or add key value pair. Schema for vector fields. Only vector fields in this schema will be searchable. Field names must contain only alphanumeric characters, underscores, and hyphens.
KEY
Sets KEY value.
VALUE
Sets VALUE value.
denseVector
Dense vector field.
dimensions
Dimensionality of the vector field.
vertexEmbeddingConfig
Configuration for generating embeddings for the vector field. If not specified, the embedding field must be populated in the DataObject.
modelId
Required: ID of the embedding model to use. See https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#embeddings-models for the list of supported models.
taskType
Required: Task type for the embeddings.
textTemplate
Required: Text template for the input to the model. The template must contain one or more references to fields in the DataObject, e.g.: "Movie Title: {title} ---- Movie Plot: {plot}".
sparseVector
Sparse vector field.
Shorthand Example:
--update-vector-schema=string={denseVector={dimensions=int,vertexEmbeddingConfig={modelId=string,taskType=string,textTemplate=string}},sparseVector}

JSON Example:

--update-vector-schema='{"string": {"denseVector": {"dimensions": int, "vertexEmbeddingConfig": {"modelId": "string", "taskType": "string", "textTemplate": "string"}}, "sparseVector": {}}}'

File Example:

--update-vector-schema=path_to_file.(yaml|json)
At most one of these can be specified:
--clear-vector-schema
Clear vector_schema value and set to empty map.
--remove-vector-schema=REMOVE_VECTOR_SCHEMA
Remove existing value from map vector_schema. Sets remove_vector_schema value. Shorthand Example:
--remove-vector-schema=string,string

JSON Example:

--remove-vector-schema=["string"]

File Example:

--remove-vector-schema=path_to_file.(yaml|json)
GCLOUD WIDE FLAGS
These flags are available to all commands: --access-token-file, --account, --billing-project, --configuration, --flags-file, --flatten, --format, --help, --impersonate-service-account, --log-http, --project, --quiet, --trace-token, --user-output-enabled, --verbosity.

Run $ gcloud help for details.

API REFERENCE
This command uses the vectorsearch/v1beta API. The full documentation for this API can be found at: https://docs.cloud.google.com/vertex-ai/docs/vector-search-2/overview
NOTES
This command is currently in beta and might change without notice.