Class StratifiedSplit.Builder (3.84.0)

public static final class StratifiedSplit.Builder extends GeneratedMessage.Builder<StratifiedSplit.Builder> implements StratifiedSplitOrBuilder

Assigns input data to the training, validation, and test sets so that the distribution of values found in the categorical column (as specified by the key field) is mirrored within each split. The fraction values determine the relative sizes of the splits.

For example, if the specified column has three values, with 50% of the rows having value "A", 25% value "B", and 25% value "C", and the split fractions are specified as 80/10/10, then the training set will constitute 80% of the training data, with about 50% of the training set rows having the value "A" for the specified column, about 25% having the value "B", and about 25% having the value "C".

Only the top 500 occurring values are used; any values not in the top 500 values are randomly assigned to a split. If less than three rows contain a specific value, those rows are randomly assigned.

Supported only for tabular Datasets.

Protobuf type google.cloud.aiplatform.v1.StratifiedSplit

Static Methods

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
Type Description
Descriptor

Methods

build()

public StratifiedSplit build()
Returns
Type Description
StratifiedSplit

buildPartial()

public StratifiedSplit buildPartial()
Returns
Type Description
StratifiedSplit

clear()

public StratifiedSplit.Builder clear()
Returns
Type Description
StratifiedSplit.Builder
Overrides

clearKey()

public StratifiedSplit.Builder clearKey()

Required. The key is a name of one of the Dataset's data columns. The key provided must be for a categorical column.

string key = 4 [(.google.api.field_behavior) = REQUIRED];

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.

clearTestFraction()

public StratifiedSplit.Builder clearTestFraction()

The fraction of the input data that is to be used to evaluate the Model.

double test_fraction = 3;

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.

clearTrainingFraction()

public StratifiedSplit.Builder clearTrainingFraction()

The fraction of the input data that is to be used to train the Model.

double training_fraction = 1;

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.

clearValidationFraction()

public StratifiedSplit.Builder clearValidationFraction()

The fraction of the input data that is to be used to validate the Model.

double validation_fraction = 2;

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.

getDefaultInstanceForType()

public StratifiedSplit getDefaultInstanceForType()
Returns
Type Description
StratifiedSplit

getDescriptorForType()

public Descriptors.Descriptor getDescriptorForType()
Returns
Type Description
Descriptor
Overrides

getKey()

public String getKey()

Required. The key is a name of one of the Dataset's data columns. The key provided must be for a categorical column.

string key = 4 [(.google.api.field_behavior) = REQUIRED];

Returns
Type Description
String

The key.

getKeyBytes()

public ByteString getKeyBytes()

Required. The key is a name of one of the Dataset's data columns. The key provided must be for a categorical column.

string key = 4 [(.google.api.field_behavior) = REQUIRED];

Returns
Type Description
ByteString

The bytes for key.

getTestFraction()

public double getTestFraction()

The fraction of the input data that is to be used to evaluate the Model.

double test_fraction = 3;

Returns
Type Description
double

The testFraction.

getTrainingFraction()

public double getTrainingFraction()

The fraction of the input data that is to be used to train the Model.

double training_fraction = 1;

Returns
Type Description
double

The trainingFraction.

getValidationFraction()

public double getValidationFraction()

The fraction of the input data that is to be used to validate the Model.

double validation_fraction = 2;

Returns
Type Description
double

The validationFraction.

internalGetFieldAccessorTable()

protected GeneratedMessage.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Type Description
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
Type Description
boolean
Overrides

mergeFrom(StratifiedSplit other)

public StratifiedSplit.Builder mergeFrom(StratifiedSplit other)
Parameter
Name Description
other StratifiedSplit
Returns
Type Description
StratifiedSplit.Builder

mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public StratifiedSplit.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
input CodedInputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
StratifiedSplit.Builder
Overrides
Exceptions
Type Description
IOException

mergeFrom(Message other)

public StratifiedSplit.Builder mergeFrom(Message other)
Parameter
Name Description
other Message
Returns
Type Description
StratifiedSplit.Builder
Overrides

setKey(String value)

public StratifiedSplit.Builder setKey(String value)

Required. The key is a name of one of the Dataset's data columns. The key provided must be for a categorical column.

string key = 4 [(.google.api.field_behavior) = REQUIRED];

Parameter
Name Description
value String

The key to set.

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.

setKeyBytes(ByteString value)

public StratifiedSplit.Builder setKeyBytes(ByteString value)

Required. The key is a name of one of the Dataset's data columns. The key provided must be for a categorical column.

string key = 4 [(.google.api.field_behavior) = REQUIRED];

Parameter
Name Description
value ByteString

The bytes for key to set.

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.

setTestFraction(double value)

public StratifiedSplit.Builder setTestFraction(double value)

The fraction of the input data that is to be used to evaluate the Model.

double test_fraction = 3;

Parameter
Name Description
value double

The testFraction to set.

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.

setTrainingFraction(double value)

public StratifiedSplit.Builder setTrainingFraction(double value)

The fraction of the input data that is to be used to train the Model.

double training_fraction = 1;

Parameter
Name Description
value double

The trainingFraction to set.

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.

setValidationFraction(double value)

public StratifiedSplit.Builder setValidationFraction(double value)

The fraction of the input data that is to be used to validate the Model.

double validation_fraction = 2;

Parameter
Name Description
value double

The validationFraction to set.

Returns
Type Description
StratifiedSplit.Builder

This builder for chaining.