Zendesk CRM 로그 수집

다음에서 지원:

이 문서에서는 Google Cloud Storage를 사용하여 Zendesk 고객 관계 관리 (CRM) 로그를 Google Security Operations에 수집하는 방법을 설명합니다. Zendesk CRM은 고객 지원 및 티켓 관리 기능을 제공합니다. 이 플랫폼은 감사 로그와 티켓 데이터를 통해 고객 상호작용, 지원 티켓, 관리 활동을 추적합니다.

시작하기 전에

다음 기본 요건이 충족되었는지 확인합니다.

  • Google SecOps 인스턴스
  • Cloud Storage API가 사용 설정된 GCP 프로젝트
  • GCS 버킷을 만들고 관리할 수 있는 권한
  • GCS 버킷의 IAM 정책을 관리할 수 있는 권한
  • Cloud Run 함수, Pub/Sub 주제, Cloud Scheduler 작업을 만들 수 있는 권한
  • Zendesk에 대한 권한 있는 액세스 (API 토큰 생성에 관리자 역할 필요)
  • Zendesk Enterprise 요금제 (감사 로그 API 액세스에 필요)

Zendesk 사전 요구사항 확인

요금제 및 역할 확인

API 토큰 또는 OAuth 클라이언트를 만들려면 Zendesk 관리자여야 합니다. 감사 로그 API는 Enterprise 요금제에서만 사용할 수 있으며 페이지당 최대 100개의 레코드를 반환합니다. 계정이 엔터프라이즈가 아닌 경우에도 증분 티켓 데이터를 수집할 수 있습니다.

API 토큰 액세스 사용 설정 (일회성)

  1. 관리 센터에서 앱 및 통합 > API > Zendesk API로 이동합니다.
  2. 설정 탭에서 토큰 액세스를 사용 설정합니다.

API 토큰 생성 (기본 인증용)

  1. 앱 및 통합 > API > Zendesk API로 이동합니다.
  2. API 토큰 추가 버튼을 클릭합니다.
  3. API 토큰 설명을 추가할 수 있습니다(선택사항).
  4. 만들기를 클릭합니다.
  5. 지금 API 토큰을 복사하여 저장하세요 (다시 볼 수 없음).
  6. 이 토큰으로 인증할 관리자 이메일을 저장합니다.

(선택사항) OAuth 클라이언트 만들기 (API 토큰 대신 Bearer 인증용)

  1. 앱 및 통합 > API > Zendesk API로 이동합니다.
  2. OAuth 클라이언트 탭을 클릭합니다.
  3. OAuth 클라이언트 추가를 클릭합니다.
  4. 클라이언트 이름, 고유 식별자 (자동), 리디렉션 URL을 입력합니다 (API로만 토큰을 생성하는 경우 자리표시자 사용 가능).
  5. 저장을 클릭합니다.
  6. 통합의 액세스 토큰을 만들고 이 가이드에 필요한 최소 범위를 부여합니다.
    • tickets:read (증분 티켓의 경우)
    • auditlogs:read (감사 로그, 엔터프라이즈만 해당)
  7. 액세스 토큰을 복사하고 (ZENDESK_BEARER_TOKEN 환경 변수에 붙여넣기) 클라이언트 ID/보안 비밀번호를 안전하게 기록합니다 (향후 토큰 새로고침 흐름용).

Zendesk 기본 URL 기록

https://<your_subdomain>.zendesk.com 사용 (ZENDESK_BASE_URL 환경 변수에 붙여넣기)

나중에 볼 항목

  • 기본 URL (예: https://acme.zendesk.com)
  • 관리자 사용자의 이메일 주소 (API 토큰 인증용)
  • API 토큰 (AUTH_MODE=token 사용 시) 또는 OAuth 액세스 토큰 (AUTH_MODE=bearer 사용 시)
  • (선택사항): 수명 주기 관리를 위한 OAuth 클라이언트 ID/보안 비밀번호

Google Cloud Storage 버킷 만들기

  1. Google Cloud Console로 이동합니다.
  2. 프로젝트를 선택하거나 새 프로젝트를 만듭니다.
  3. 탐색 메뉴에서 Cloud Storage> 버킷으로 이동합니다.
  4. 버킷 만들기를 클릭합니다.
  5. 다음 구성 세부정보를 제공합니다.

    설정
    버킷 이름 지정 전역적으로 고유한 이름 (예: zendesk-crm-logs)을 입력합니다.
    위치 유형 필요에 따라 선택 (리전, 이중 리전, 멀티 리전)
    위치 위치를 선택합니다 (예: us-central1).
    스토리지 클래스 Standard (자주 액세스하는 로그에 권장)
    액세스 제어 균일 (권장)
    보호 도구 선택사항: 객체 버전 관리 또는 보관 정책 사용 설정
  6. 만들기를 클릭합니다.

Cloud Run 함수의 서비스 계정 만들기

Cloud Run 함수에는 GCS 버킷에 쓸 수 있고 Pub/Sub에서 호출할 수 있는 권한이 있는 서비스 계정이 필요합니다.

서비스 계정 만들기

  1. GCP 콘솔에서 IAM 및 관리자 > 서비스 계정으로 이동합니다.
  2. 서비스 계정 만들기를 클릭합니다.
  3. 다음 구성 세부정보를 제공합니다.
    • 서비스 계정 이름: zendesk-crm-collector-sa을 입력합니다.
    • 서비스 계정 설명: Service account for Cloud Run function to collect Zendesk CRM logs을 입력합니다.
  4. 만들고 계속하기를 클릭합니다.
  5. 이 서비스 계정에 프로젝트에 대한 액세스 권한 부여 섹션에서 다음 역할을 추가합니다.
    1. 역할 선택을 클릭합니다.
    2. 스토리지 객체 관리자를 검색하여 선택합니다.
    3. + 다른 역할 추가를 클릭합니다.
    4. Cloud Run 호출자를 검색하여 선택합니다.
    5. + 다른 역할 추가를 클릭합니다.
    6. Cloud Functions 호출자를 검색하여 선택합니다.
  6. 계속을 클릭합니다.
  7. 완료를 클릭합니다.

이러한 역할은 다음 작업에 필요합니다.

  • 스토리지 객체 관리자: GCS 버킷에 로그를 쓰고 상태 파일을 관리합니다.
  • Cloud Run 호출자: Pub/Sub가 함수를 호출하도록 허용
  • Cloud Functions 호출자: 함수 호출 허용

GCS 버킷에 대한 IAM 권한 부여

GCS 버킷에 대한 쓰기 권한을 서비스 계정에 부여합니다.

  1. Cloud Storage> 버킷으로 이동합니다.
  2. 버킷 이름을 클릭합니다.
  3. 권한 탭으로 이동합니다.
  4. 액세스 권한 부여를 클릭합니다.
  5. 다음 구성 세부정보를 제공합니다.
    • 주 구성원 추가: 서비스 계정 이메일 (예: zendesk-crm-collector-sa@PROJECT_ID.iam.gserviceaccount.com)을 입력합니다.
    • 역할 할당: 스토리지 객체 관리자를 선택합니다.
  6. 저장을 클릭합니다.

게시/구독 주제 만들기

Cloud Scheduler가 게시하고 Cloud Run 함수가 구독할 Pub/Sub 주제를 만듭니다.

  1. GCP Console에서 Pub/Sub > 주제로 이동합니다.
  2. 주제 만들기를 클릭합니다.
  3. 다음 구성 세부정보를 제공합니다.
    • 주제 ID: zendesk-crm-trigger를 입력합니다.
    • 다른 설정은 기본값으로 둡니다.
  4. 만들기를 클릭합니다.

로그를 수집하는 Cloud Run 함수 만들기

Cloud Run 함수는 Cloud Scheduler의 Pub/Sub 메시지에 의해 트리거되어 Zendesk API에서 로그를 가져오고 GCS에 씁니다.

  1. GCP 콘솔에서 Cloud Run으로 이동합니다.
  2. 서비스 만들기를 클릭합니다.
  3. 함수를 선택합니다 (인라인 편집기를 사용하여 함수 만들기).
  4. 구성 섹션에서 다음 구성 세부정보를 제공합니다.

    설정
    서비스 이름 zendesk-crm-collector
    리전 GCS 버킷과 일치하는 리전을 선택합니다 (예: us-central1).
    런타임 Python 3.12 이상 선택
  5. 트리거 (선택사항) 섹션에서 다음을 수행합니다.

    1. + 트리거 추가를 클릭합니다.
    2. Cloud Pub/Sub를 선택합니다.
    3. Cloud Pub/Sub 주제 선택에서 zendesk-crm-trigger 주제를 선택합니다.
    4. 저장을 클릭합니다.
  6. 인증 섹션에서 다음을 구성합니다.

    1. 인증 필요를 선택합니다.
    2. ID 및 액세스 관리 (IAM)를 확인합니다.
  7. 아래로 스크롤하고 컨테이너, 네트워킹, 보안을 펼칩니다.

  8. 보안 탭으로 이동합니다.

    • 서비스 계정: 서비스 계정 zendesk-crm-collector-sa를 선택합니다.
  9. 컨테이너 탭으로 이동합니다.

    1. 변수 및 보안 비밀을 클릭합니다.
    2. 각 환경 변수에 대해 + 변수 추가를 클릭합니다.
    변수 이름 예시 값 설명
    GCS_BUCKET zendesk-crm-logs GCS 버킷 이름
    GCS_PREFIX zendesk/crm/ 로그 파일의 접두사
    STATE_KEY zendesk/crm/state.json 상태 파일 경로
    ZENDESK_BASE_URL https://your_subdomain.zendesk.com Zendesk 기본 URL
    AUTH_MODE token 인증 모드 (token 또는 bearer)
    ZENDESK_EMAIL analyst@example.com API 토큰 인증을 위한 관리자 이메일
    ZENDESK_API_TOKEN <api_token> 인증을 위한 API 토큰
    ZENDESK_BEARER_TOKEN <leave empty unless using OAuth bearer> OAuth 베어러 토큰 (선택사항)
    RESOURCES audit_logs,incremental_tickets 수집할 리소스
    MAX_PAGES 20 실행당 최대 페이지 수
    LOOKBACK_SECONDS 3600 초기 전환 확인 기간
    HTTP_TIMEOUT 60 HTTP 요청 시간초과
    HTTP_RETRIES 3 HTTP 재시도 횟수
  10. 변수 및 보안 비밀 섹션에서 요청까지 아래로 스크롤합니다.

    • 요청 제한 시간: 600초 (10분)를 입력합니다.
  11. 설정 탭으로 이동합니다.

    • 리소스 섹션에서 다음을 수행합니다.
      • 메모리: 512MiB 이상을 선택합니다.
      • CPU: 1을 선택합니다.
  12. 버전 확장 섹션에서 다음을 수행합니다.

    • 최소 인스턴스 수: 0를 입력합니다.
    • 최대 인스턴스 수: 100을 입력합니다 (또는 예상 부하에 따라 조정).
  13. 만들기를 클릭합니다.

  14. 서비스가 생성될 때까지 기다립니다 (1~2분).

  15. 서비스가 생성되면 인라인 코드 편집기가 자동으로 열립니다.

함수 코드 추가

  1. 함수 진입점main을 입력합니다.
  2. 인라인 코드 편집기에서 다음 두 파일을 만듭니다.

    • 첫 번째 파일: main.py:
    import functions_framework
    from google.cloud import storage
    import json
    import os
    import urllib3
    from datetime import datetime, timezone
    import base64
    import time
    
    # Initialize HTTP client with timeouts
    http = urllib3.PoolManager(
        timeout=urllib3.Timeout(connect=5.0, read=30.0),
        retries=False,
    )
    
    # Initialize Storage client
    storage_client = storage.Client()
    
    @functions_framework.cloud_event
    def main(cloud_event):
        """
        Cloud Run function triggered by Pub/Sub to fetch logs from Zendesk API and write to GCS.
    
        Args:
            cloud_event: CloudEvent object containing Pub/Sub message
        """
    
        # Get environment variables
        bucket_name = os.environ.get('GCS_BUCKET')
        prefix = os.environ.get('GCS_PREFIX', 'zendesk/crm/')
        state_key = os.environ.get('STATE_KEY', 'zendesk/crm/state.json')
    
        base_url = os.environ.get('ZENDESK_BASE_URL', '').rstrip('/')
        auth_mode = os.environ.get('AUTH_MODE', 'token').lower()
        email = os.environ.get('ZENDESK_EMAIL', '')
        api_token = os.environ.get('ZENDESK_API_TOKEN', '')
        bearer = os.environ.get('ZENDESK_BEARER_TOKEN', '')
    
        resources = [r.strip() for r in os.environ.get('RESOURCES', 'audit_logs,incremental_tickets').split(',') if r.strip()]
        max_pages = int(os.environ.get('MAX_PAGES', '20'))
        lookback = int(os.environ.get('LOOKBACK_SECONDS', '3600'))
        http_timeout = int(os.environ.get('HTTP_TIMEOUT', '60'))
        http_retries = int(os.environ.get('HTTP_RETRIES', '3'))
    
        if not all([bucket_name, base_url]):
            print('Error: Missing required environment variables')
            return
    
        try:
            # Get GCS bucket
            bucket = storage_client.bucket(bucket_name)
    
            # Load state
            state = load_state(bucket, state_key)
    
            print(f'Processing resources: {resources}')
    
            summary = []
    
            if 'audit_logs' in resources:
                res = fetch_audit_logs(
                    bucket, prefix, state.get('audit_logs', {}),
                    base_url, auth_mode, email, api_token, bearer,
                    max_pages, http_timeout, http_retries
                )
                state['audit_logs'] = {'next_url': res.get('next_url')}
                summary.append(res)
    
            if 'incremental_tickets' in resources:
                res = fetch_incremental_tickets(
                    bucket, prefix, state.get('incremental_tickets', {}),
                    base_url, auth_mode, email, api_token, bearer,
                    max_pages, lookback, http_timeout, http_retries
                )
                state['incremental_tickets'] = {'cursor': res.get('cursor')}
                summary.append(res)
    
            # Save state
            save_state(bucket, state_key, state)
    
            print(f'Successfully processed logs: {summary}')
    
        except Exception as e:
            print(f'Error processing logs: {str(e)}')
            raise
    
    def get_headers(auth_mode, email, api_token, bearer):
        """Get authentication headers."""
        if auth_mode == 'bearer' and bearer:
            return {
                'Authorization': f'Bearer {bearer}',
                'Accept': 'application/json'
            }
        if auth_mode == 'token' and email and api_token:
            auth_string = f'{email}/token:{api_token}'
            auth_bytes = auth_string.encode('utf-8')
            token = base64.b64encode(auth_bytes).decode('utf-8')
            return {
                'Authorization': f'Basic {token}',
                'Accept': 'application/json'
            }
        raise RuntimeError('Invalid auth settings: provide token (EMAIL + API_TOKEN) or BEARER')
    
    def http_get_json(url, headers, timeout, retries):
        """Make HTTP GET request with retries and exponential backoff."""
        attempt = 0
        backoff = 1.0
        while True:
            try:
                response = http.request('GET', url, headers=headers, timeout=timeout)
                if response.status == 200:
                    return json.loads(response.data.decode('utf-8'))
                elif response.status in (429, 500, 502, 503, 504) and attempt < retries:
                    retry_after = int(response.headers.get('Retry-After', int(backoff)))
                    print(f'HTTP {response.status}: Retrying after {retry_after}s (attempt {attempt + 1}/{retries})')
                    time.sleep(max(1, retry_after))
                    backoff = min(backoff * 2, 30.0)
                    attempt += 1
                    continue
                else:
                    raise Exception(f'HTTP {response.status}: {response.data.decode("utf-8")}')
            except Exception as e:
                if attempt < retries:
                    print(f'Request error: {e}. Retrying after {int(backoff)}s (attempt {attempt + 1}/{retries})')
                    time.sleep(backoff)
                    backoff = min(backoff * 2, 30.0)
                    attempt += 1
                    continue
                raise
    
    def put_page(bucket, prefix, payload, resource):
        """Write page to GCS."""
        ts = datetime.now(timezone.utc)
        key = f'{prefix}{ts.strftime("%Y/%m/%d/%H%M%S")}-zendesk-{resource}.json'
        blob = bucket.blob(key)
        blob.upload_from_string(
            json.dumps(payload),
            content_type='application/json'
        )
        return key
    
    def fetch_audit_logs(bucket, prefix, state, base_url, auth_mode, email, api_token, bearer, max_pages, timeout, retries):
        """Fetch audit logs with pagination."""
        headers = get_headers(auth_mode, email, api_token, bearer)
        next_url = state.get('next_url') or f'{base_url}/api/v2/audit_logs.json'
    
        pages = 0
        written = 0
        last_next = None
    
        while pages < max_pages and next_url:
            data = http_get_json(next_url, headers, timeout, retries)
            put_page(bucket, prefix, data, 'audit_logs')
            written += len(data.get('audit_logs', []))
    
            # Use next_page for pagination
            last_next = data.get('next_page')
            next_url = last_next
            pages += 1
    
            print(f'Audit logs page {pages}: Retrieved {len(data.get("audit_logs", []))} records')
    
        return {
            'resource': 'audit_logs',
            'pages': pages,
            'written': written,
            'next_url': last_next
        }
    
    def fetch_incremental_tickets(bucket, prefix, state, base_url, auth_mode, email, api_token, bearer, max_pages, lookback, timeout, retries):
        """Fetch incremental tickets with cursor-based pagination."""
        headers = get_headers(auth_mode, email, api_token, bearer)
        cursor = state.get('cursor')
    
        if not cursor:
            start = int(time.time()) - lookback
            next_url = f'{base_url}/api/v2/incremental/tickets/cursor.json?start_time={start}'
        else:
            next_url = f'{base_url}/api/v2/incremental/tickets/cursor.json?cursor={cursor}'
    
        pages = 0
        written = 0
        last_cursor = None
    
        while pages < max_pages and next_url:
            data = http_get_json(next_url, headers, timeout, retries)
            put_page(bucket, prefix, data, 'incremental_tickets')
            written += len(data.get('tickets', []))
    
            # Extract cursor from after_cursor field
            last_cursor = data.get('after_cursor')
            if last_cursor:
                next_url = f'{base_url}/api/v2/incremental/tickets/cursor.json?cursor={last_cursor}'
            else:
                next_url = None
    
            pages += 1
    
            print(f'Incremental tickets page {pages}: Retrieved {len(data.get("tickets", []))} records')
    
        return {
            'resource': 'incremental_tickets',
            'pages': pages,
            'written': written,
            'cursor': last_cursor
        }
    
    def load_state(bucket, key):
        """Load state from GCS."""
        try:
            blob = bucket.blob(key)
            if blob.exists():
                state_data = blob.download_as_text()
                return json.loads(state_data)
        except Exception as e:
            print(f'Warning: Could not load state: {str(e)}')
        return {'audit_logs': {}, 'incremental_tickets': {}}
    
    def save_state(bucket, key, state):
        """Save state to GCS."""
        try:
            blob = bucket.blob(key)
            blob.upload_from_string(
                json.dumps(state),
                content_type='application/json'
            )
        except Exception as e:
            print(f'Warning: Could not save state: {str(e)}')
    
    • 두 번째 파일: requirements.txt:
    functions-framework==3.*
    google-cloud-storage==2.*
    urllib3>=2.0.0
    
  3. 배포를 클릭하여 함수를 저장하고 배포합니다.

  4. 배포가 완료될 때까지 기다립니다 (2~3분).

Cloud Scheduler 작업 만들기

Cloud Scheduler는 일정 간격으로 Pub/Sub 주제에 메시지를 게시하여 Cloud Run 함수를 트리거합니다.

  1. GCP Console에서 Cloud Scheduler로 이동합니다.
  2. 작업 만들기를 클릭합니다.
  3. 다음 구성 세부정보를 제공합니다.

    설정
    이름 zendesk-crm-collector-hourly
    리전 Cloud Run 함수와 동일한 리전 선택
    주파수 0 * * * * (매시간 정각)
    시간대 시간대 선택 (UTC 권장)
    타겟 유형 Pub/Sub
    주제 zendesk-crm-trigger 주제를 선택합니다.
    메일 본문 {} (빈 JSON 객체)
  4. 만들기를 클릭합니다.

일정 빈도 옵션

  • 로그 볼륨 및 지연 시간 요구사항에 따라 빈도를 선택합니다.

    빈도 크론 표현식 사용 사례
    5분마다 */5 * * * * 대용량, 저지연
    15분마다 */15 * * * * 검색량 보통
    1시간마다 0 * * * * 일반(권장)
    6시간마다 0 */6 * * * 양이 적은 일괄 처리
    매일 0 0 * * * 이전 데이터 수집

통합 테스트

  1. Cloud Scheduler 콘솔에서 작업을 찾습니다.
  2. 강제 실행을 클릭하여 작업을 수동으로 트리거합니다.
  3. 몇 초 동안 기다립니다.
  4. Cloud Run > 서비스로 이동합니다.
  5. 함수 이름 zendesk-crm-collector을 클릭합니다.
  6. 로그 탭을 클릭합니다.
  7. 함수가 성공적으로 실행되었는지 확인합니다. 다음을 확인하세요.

    Processing resources: ['audit_logs', 'incremental_tickets']
    Audit logs page 1: Retrieved X records
    Incremental tickets page 1: Retrieved X records
    Successfully processed logs: [...]
    
  8. Cloud Storage> 버킷으로 이동합니다.

  9. 버킷 이름을 클릭합니다.

  10. 접두사 폴더 zendesk/crm/로 이동합니다.

  11. .json 파일이 현재 타임스탬프로 생성되었는지 확인합니다.

로그에 오류가 표시되면 다음 단계를 따르세요.

  • HTTP 401: 환경 변수에서 API 사용자 인증 정보 확인
  • HTTP 403: 계정에 필요한 권한 (감사 로그의 관리자 역할, Enterprise 요금제)이 있는지 확인합니다.
  • HTTP 429: 비율 제한 - 함수가 지수 백오프로 자동 재시도됩니다.
  • 환경 변수 누락: 필수 변수가 모두 설정되었는지 확인

Google SecOps 서비스 계정 가져오기

Google SecOps는 고유한 서비스 계정을 사용하여 GCS 버킷에서 데이터를 읽습니다. 이 서비스 계정에 버킷에 대한 액세스 권한을 부여해야 합니다.

서비스 계정 이메일 가져오기

  1. SIEM 설정> 피드로 이동합니다.
  2. 새 피드 추가를 클릭합니다.
  3. 단일 피드 구성을 클릭합니다.
  4. 피드 이름 필드에 피드 이름을 입력합니다(예: Zendesk CRM logs).
  5. 소스 유형으로 Google Cloud Storage V2를 선택합니다.
  6. 로그 유형으로 Zendesk CRM을 선택합니다.
  7. 서비스 계정 가져오기를 클릭합니다. 고유한 서비스 계정 이메일이 표시됩니다. 예를 들면 다음과 같습니다.

    chronicle-12345678@chronicle-gcp-prod.iam.gserviceaccount.com
    
  8. 다음 단계에서 사용할 수 있도록 이 이메일 주소를 복사합니다.

Google SecOps 서비스 계정에 IAM 권한 부여

Google SecOps 서비스 계정에는 GCS 버킷에 대한 스토리지 객체 뷰어 역할이 필요합니다.

  1. Cloud Storage> 버킷으로 이동합니다.
  2. 버킷 이름을 클릭합니다.
  3. 권한 탭으로 이동합니다.
  4. 액세스 권한 부여를 클릭합니다.
  5. 다음 구성 세부정보를 제공합니다.
    • 주 구성원 추가: Google SecOps 서비스 계정 이메일을 붙여넣습니다.
    • 역할 할당: 스토리지 객체 뷰어를 선택합니다.
  6. 저장을 클릭합니다.

Zendesk CRM 로그를 수집하도록 Google SecOps에서 피드 구성

  1. SIEM 설정> 피드로 이동합니다.
  2. 새 피드 추가를 클릭합니다.
  3. 단일 피드 구성을 클릭합니다.
  4. 피드 이름 필드에 피드 이름을 입력합니다(예: Zendesk CRM logs).
  5. 소스 유형으로 Google Cloud Storage V2를 선택합니다.
  6. 로그 유형으로 Zendesk CRM을 선택합니다.
  7. 다음을 클릭합니다.
  8. 다음 입력 매개변수의 값을 지정합니다.

    • 스토리지 버킷 URL: 다음 접두사 경로를 사용하여 GCS 버킷 URI를 입력합니다.

      gs://zendesk-crm-logs/zendesk/crm/
      
      • 다음과 같이 바꿉니다.

        • zendesk-crm-logs: GCS 버킷 이름입니다.
        • zendesk/crm/: 로그가 저장되는 접두사/폴더 경로입니다.
    • 소스 삭제 옵션: 환경설정에 따라 삭제 옵션을 선택합니다.

      • 삭제 안함: 전송 후 파일을 삭제하지 않습니다 (테스트에 권장).
      • 전송된 파일 삭제: 전송이 완료되면 파일을 삭제합니다.
      • 전송된 파일 및 빈 디렉터리 삭제: 전송이 완료되면 파일과 빈 디렉터리를 삭제합니다.

    • 최대 파일 기간: 지난 일수 동안 수정된 파일을 포함합니다. 기본값은 180일입니다.

    • 애셋 네임스페이스: 애셋 네임스페이스입니다.

    • 수집 라벨: 이 피드의 이벤트에 적용할 라벨입니다.

  9. 다음을 클릭합니다.

  10. 확정 화면에서 새 피드 구성을 검토한 다음 제출을 클릭합니다.

도움이 더 필요한가요? 커뮤니티 회원 및 Google SecOps 전문가에게 문의하여 답변을 받으세요.