Collect Zendesk CRM logs

Supported in:

This document explains how to ingest Zendesk Customer Relationship Management (CRM) logs to Google Security Operations using Google Cloud Storage. Zendesk CRM provides customer support and ticketing management capabilities. The platform tracks customer interactions, support tickets, and administrative activities through audit logs and ticket data.

Before you begin

Ensure that you have the following prerequisites:

  • A Google SecOps instance
  • A GCP project with Cloud Storage API enabled
  • Permissions to create and manage GCS buckets
  • Permissions to manage IAM policies on GCS buckets
  • Permissions to create Cloud Run functions, Pub/Sub topics, and Cloud Scheduler jobs
  • Privileged access to Zendesk (Admin role required for API token creation)
  • Zendesk Enterprise plan (required for Audit Logs API access)

Get Zendesk prerequisites

Confirm plan and role

You must be a Zendesk Admin to create API tokens or OAuth clients. The Audit Logs API is available only on Enterprise plan and returns a maximum of 100 records per page. If your account isn't Enterprise, you can still collect incremental tickets data.

Turn on API token access (one-time)

  1. In the Admin Center, go to Apps and integrations > APIs > Zendesk API.
  2. In the Settings tab, enable Token Access.

Generate an API token (for Basic auth)

  1. Go to Apps and integrations > APIs > Zendesk API.
  2. Click the Add API token button.
  3. Optionally add a API token description.
  4. Click Create.
  5. Copy and save the API token now (you won't be able to view it again).
  6. Save the admin email that will authenticate with this token.

(Optional) Create an OAuth client (for Bearer auth instead of API token)

  1. Go to Apps and integrations > APIs > Zendesk API.
  2. Click the OAuth Clients tab.
  3. Click Add OAuth client.
  4. Fill in the Client Name, Unique Identifier (auto), Redirect URLs (can be placeholder if you only mint tokens with API).
  5. Click Save.
  6. Create an access token for the integration and grant the minimum scopes required by this guide:
    • tickets:read (for Incremental Tickets)
    • auditlogs:read (for Audit Logs; Enterprise only)
  7. Copy the access token (paste into ZENDESK_BEARER_TOKEN environment variable) and record the client ID/secret securely (for future token refresh flows).

Record your Zendesk base URL

Use https://<your_subdomain>.zendesk.com (paste into ZENDESK_BASE_URL environment variable).

What to save for later

  • Base URL (for example, https://acme.zendesk.com)
  • Email Address of the administrator user (for API token auth)
  • API Token (if using AUTH_MODE=token) or OAuth access token (if using AUTH_MODE=bearer)
  • (Optional): OAuth client id/secret for lifecycle management

Create Google Cloud Storage bucket

  1. Go to the Google Cloud Console.
  2. Select your project or create a new one.
  3. In the navigation menu, go to Cloud Storage > Buckets.
  4. Click Create bucket.
  5. Provide the following configuration details:

    Setting Value
    Name your bucket Enter a globally unique name (for example, zendesk-crm-logs)
    Location type Choose based on your needs (Region, Dual-region, Multi-region)
    Location Select the location (for example, us-central1)
    Storage class Standard (recommended for frequently accessed logs)
    Access control Uniform (recommended)
    Protection tools Optional: Enable object versioning or retention policy
  6. Click Create.

Create service account for Cloud Run function

The Cloud Run function needs a service account with permissions to write to GCS bucket and be invoked by Pub/Sub.

Create service account

  1. In the GCP Console, go to IAM & Admin > Service Accounts.
  2. Click Create Service Account.
  3. Provide the following configuration details:
    • Service account name: Enter zendesk-crm-collector-sa.
    • Service account description: Enter Service account for Cloud Run function to collect Zendesk CRM logs.
  4. Click Create and Continue.
  5. In the Grant this service account access to project section, add the following roles:
    1. Click Select a role.
    2. Search for and select Storage Object Admin.
    3. Click + Add another role.
    4. Search for and select Cloud Run Invoker.
    5. Click + Add another role.
    6. Search for and select Cloud Functions Invoker.
  6. Click Continue.
  7. Click Done.

These roles are required for:

  • Storage Object Admin: Write logs to GCS bucket and manage state files
  • Cloud Run Invoker: Allow Pub/Sub to invoke the function
  • Cloud Functions Invoker: Allow function invocation

Grant IAM permissions on GCS bucket

Grant the service account write permissions on the GCS bucket:

  1. Go to Cloud Storage > Buckets.
  2. Click your bucket name.
  3. Go to the Permissions tab.
  4. Click Grant access.
  5. Provide the following configuration details:
    • Add principals: Enter the service account email (for example, zendesk-crm-collector-sa@PROJECT_ID.iam.gserviceaccount.com).
    • Assign roles: Select Storage Object Admin.
  6. Click Save.

Create Pub/Sub topic

Create a Pub/Sub topic that Cloud Scheduler will publish to and the Cloud Run function will subscribe to.

  1. In the GCP Console, go to Pub/Sub > Topics.
  2. Click Create topic.
  3. Provide the following configuration details:
    • Topic ID: Enter zendesk-crm-trigger.
    • Leave other settings as default.
  4. Click Create.

Create Cloud Run function to collect logs

The Cloud Run function is triggered by Pub/Sub messages from Cloud Scheduler to fetch logs from Zendesk API and writes them to GCS.

  1. In the GCP Console, go to Cloud Run.
  2. Click Create service.
  3. Select Function (use an inline editor to create a function).
  4. In the Configure section, provide the following configuration details:

    Setting Value
    Service name zendesk-crm-collector
    Region Select region matching your GCS bucket (for example, us-central1)
    Runtime Select Python 3.12 or later
  5. In the Trigger (optional) section:

    1. Click + Add trigger.
    2. Select Cloud Pub/Sub.
    3. In Select a Cloud Pub/Sub topic, choose the topic zendesk-crm-trigger.
    4. Click Save.
  6. In the Authentication section:

    1. Select Require authentication.
    2. Check Identity and Access Management (IAM).
  7. Scroll down and expand Containers, Networking, Security.

  8. Go to the Security tab:

    • Service account: Select the service account zendesk-crm-collector-sa.
  9. Go to the Containers tab:

    1. Click Variables & Secrets.
    2. Click + Add variable for each environment variable:
    Variable Name Example Value Description
    GCS_BUCKET zendesk-crm-logs GCS bucket name
    GCS_PREFIX zendesk/crm/ Prefix for log files
    STATE_KEY zendesk/crm/state.json State file path
    ZENDESK_BASE_URL https://your_subdomain.zendesk.com Zendesk base URL
    AUTH_MODE token Authentication mode (token or bearer)
    ZENDESK_EMAIL analyst@example.com Admin email for API token auth
    ZENDESK_API_TOKEN <api_token> API token for authentication
    ZENDESK_BEARER_TOKEN <leave empty unless using OAuth bearer> OAuth bearer token (optional)
    RESOURCES audit_logs,incremental_tickets Resources to collect
    MAX_PAGES 20 Maximum pages per run
    LOOKBACK_SECONDS 3600 Initial lookback period
    HTTP_TIMEOUT 60 HTTP request timeout
    HTTP_RETRIES 3 HTTP retry attempts
  10. In the Variables & Secrets section, scroll down to Requests:

    • Request timeout: Enter 600 seconds (10 minutes).
  11. Go to the Settings tab:

    • In the Resources section:
      • Memory: Select 512 MiB or higher.
      • CPU: Select 1.
  12. In the Revision scaling section:

    • Minimum number of instances: Enter 0.
    • Maximum number of instances: Enter 100 (or adjust based on expected load).
  13. Click Create.

  14. Wait for the service to be created (1-2 minutes).

  15. After the service is created, the inline code editor opens automatically.

Add function code

  1. Enter main in Function entry point
  2. In the inline code editor, create two files:

    • First file: main.py:
    import functions_framework
    from google.cloud import storage
    import json
    import os
    import urllib3
    from datetime import datetime, timezone
    import base64
    import time
    
    # Initialize HTTP client with timeouts
    http = urllib3.PoolManager(
        timeout=urllib3.Timeout(connect=5.0, read=30.0),
        retries=False,
    )
    
    # Initialize Storage client
    storage_client = storage.Client()
    
    @functions_framework.cloud_event
    def main(cloud_event):
        """
        Cloud Run function triggered by Pub/Sub to fetch logs from Zendesk API and write to GCS.
    
        Args:
            cloud_event: CloudEvent object containing Pub/Sub message
        """
    
        # Get environment variables
        bucket_name = os.environ.get('GCS_BUCKET')
        prefix = os.environ.get('GCS_PREFIX', 'zendesk/crm/')
        state_key = os.environ.get('STATE_KEY', 'zendesk/crm/state.json')
    
        base_url = os.environ.get('ZENDESK_BASE_URL', '').rstrip('/')
        auth_mode = os.environ.get('AUTH_MODE', 'token').lower()
        email = os.environ.get('ZENDESK_EMAIL', '')
        api_token = os.environ.get('ZENDESK_API_TOKEN', '')
        bearer = os.environ.get('ZENDESK_BEARER_TOKEN', '')
    
        resources = [r.strip() for r in os.environ.get('RESOURCES', 'audit_logs,incremental_tickets').split(',') if r.strip()]
        max_pages = int(os.environ.get('MAX_PAGES', '20'))
        lookback = int(os.environ.get('LOOKBACK_SECONDS', '3600'))
        http_timeout = int(os.environ.get('HTTP_TIMEOUT', '60'))
        http_retries = int(os.environ.get('HTTP_RETRIES', '3'))
    
        if not all([bucket_name, base_url]):
            print('Error: Missing required environment variables')
            return
    
        try:
            # Get GCS bucket
            bucket = storage_client.bucket(bucket_name)
    
            # Load state
            state = load_state(bucket, state_key)
    
            print(f'Processing resources: {resources}')
    
            summary = []
    
            if 'audit_logs' in resources:
                res = fetch_audit_logs(
                    bucket, prefix, state.get('audit_logs', {}),
                    base_url, auth_mode, email, api_token, bearer,
                    max_pages, http_timeout, http_retries
                )
                state['audit_logs'] = {'next_url': res.get('next_url')}
                summary.append(res)
    
            if 'incremental_tickets' in resources:
                res = fetch_incremental_tickets(
                    bucket, prefix, state.get('incremental_tickets', {}),
                    base_url, auth_mode, email, api_token, bearer,
                    max_pages, lookback, http_timeout, http_retries
                )
                state['incremental_tickets'] = {'cursor': res.get('cursor')}
                summary.append(res)
    
            # Save state
            save_state(bucket, state_key, state)
    
            print(f'Successfully processed logs: {summary}')
    
        except Exception as e:
            print(f'Error processing logs: {str(e)}')
            raise
    
    def get_headers(auth_mode, email, api_token, bearer):
        """Get authentication headers."""
        if auth_mode == 'bearer' and bearer:
            return {
                'Authorization': f'Bearer {bearer}',
                'Accept': 'application/json'
            }
        if auth_mode == 'token' and email and api_token:
            auth_string = f'{email}/token:{api_token}'
            auth_bytes = auth_string.encode('utf-8')
            token = base64.b64encode(auth_bytes).decode('utf-8')
            return {
                'Authorization': f'Basic {token}',
                'Accept': 'application/json'
            }
        raise RuntimeError('Invalid auth settings: provide token (EMAIL + API_TOKEN) or BEARER')
    
    def http_get_json(url, headers, timeout, retries):
        """Make HTTP GET request with retries and exponential backoff."""
        attempt = 0
        backoff = 1.0
        while True:
            try:
                response = http.request('GET', url, headers=headers, timeout=timeout)
                if response.status == 200:
                    return json.loads(response.data.decode('utf-8'))
                elif response.status in (429, 500, 502, 503, 504) and attempt < retries:
                    retry_after = int(response.headers.get('Retry-After', int(backoff)))
                    print(f'HTTP {response.status}: Retrying after {retry_after}s (attempt {attempt + 1}/{retries})')
                    time.sleep(max(1, retry_after))
                    backoff = min(backoff * 2, 30.0)
                    attempt += 1
                    continue
                else:
                    raise Exception(f'HTTP {response.status}: {response.data.decode("utf-8")}')
            except Exception as e:
                if attempt < retries:
                    print(f'Request error: {e}. Retrying after {int(backoff)}s (attempt {attempt + 1}/{retries})')
                    time.sleep(backoff)
                    backoff = min(backoff * 2, 30.0)
                    attempt += 1
                    continue
                raise
    
    def put_page(bucket, prefix, payload, resource):
        """Write page to GCS."""
        ts = datetime.now(timezone.utc)
        key = f'{prefix}{ts.strftime("%Y/%m/%d/%H%M%S")}-zendesk-{resource}.json'
        blob = bucket.blob(key)
        blob.upload_from_string(
            json.dumps(payload),
            content_type='application/json'
        )
        return key
    
    def fetch_audit_logs(bucket, prefix, state, base_url, auth_mode, email, api_token, bearer, max_pages, timeout, retries):
        """Fetch audit logs with pagination."""
        headers = get_headers(auth_mode, email, api_token, bearer)
        next_url = state.get('next_url') or f'{base_url}/api/v2/audit_logs.json'
    
        pages = 0
        written = 0
        last_next = None
    
        while pages < max_pages and next_url:
            data = http_get_json(next_url, headers, timeout, retries)
            put_page(bucket, prefix, data, 'audit_logs')
            written += len(data.get('audit_logs', []))
    
            # Use next_page for pagination
            last_next = data.get('next_page')
            next_url = last_next
            pages += 1
    
            print(f'Audit logs page {pages}: Retrieved {len(data.get("audit_logs", []))} records')
    
        return {
            'resource': 'audit_logs',
            'pages': pages,
            'written': written,
            'next_url': last_next
        }
    
    def fetch_incremental_tickets(bucket, prefix, state, base_url, auth_mode, email, api_token, bearer, max_pages, lookback, timeout, retries):
        """Fetch incremental tickets with cursor-based pagination."""
        headers = get_headers(auth_mode, email, api_token, bearer)
        cursor = state.get('cursor')
    
        if not cursor:
            start = int(time.time()) - lookback
            next_url = f'{base_url}/api/v2/incremental/tickets/cursor.json?start_time={start}'
        else:
            next_url = f'{base_url}/api/v2/incremental/tickets/cursor.json?cursor={cursor}'
    
        pages = 0
        written = 0
        last_cursor = None
    
        while pages < max_pages and next_url:
            data = http_get_json(next_url, headers, timeout, retries)
            put_page(bucket, prefix, data, 'incremental_tickets')
            written += len(data.get('tickets', []))
    
            # Extract cursor from after_cursor field
            last_cursor = data.get('after_cursor')
            if last_cursor:
                next_url = f'{base_url}/api/v2/incremental/tickets/cursor.json?cursor={last_cursor}'
            else:
                next_url = None
    
            pages += 1
    
            print(f'Incremental tickets page {pages}: Retrieved {len(data.get("tickets", []))} records')
    
        return {
            'resource': 'incremental_tickets',
            'pages': pages,
            'written': written,
            'cursor': last_cursor
        }
    
    def load_state(bucket, key):
        """Load state from GCS."""
        try:
            blob = bucket.blob(key)
            if blob.exists():
                state_data = blob.download_as_text()
                return json.loads(state_data)
        except Exception as e:
            print(f'Warning: Could not load state: {str(e)}')
        return {'audit_logs': {}, 'incremental_tickets': {}}
    
    def save_state(bucket, key, state):
        """Save state to GCS."""
        try:
            blob = bucket.blob(key)
            blob.upload_from_string(
                json.dumps(state),
                content_type='application/json'
            )
        except Exception as e:
            print(f'Warning: Could not save state: {str(e)}')
    
    • Second file: requirements.txt:
    functions-framework==3.*
    google-cloud-storage==2.*
    urllib3>=2.0.0
    
  3. Click Deploy to save and deploy the function.

  4. Wait for deployment to complete (2-3 minutes).

Create Cloud Scheduler job

Cloud scheduler publishes messages to the Pub/Sub topic at regular intervals, triggering the Cloud Run function.

  1. In the GCP Console, go to Cloud Scheduler.
  2. Click Create Job.
  3. Provide the following configuration details:

    Setting Value
    Name zendesk-crm-collector-hourly
    Region Select same region as Cloud Run function
    Frequency 0 * * * * (every hour, on the hour)
    Timezone Select timezone (UTC recommended)
    Target type Pub/Sub
    Topic Select the topic zendesk-crm-trigger
    Message body {} (empty JSON object)
  4. Click Create.

Schedule frequency options

  • Choose frequency based on log volume and latency requirements:

    Frequency Cron Expression Use Case
    Every 5 minutes */5 * * * * High-volume, low-latency
    Every 15 minutes */15 * * * * Medium volume
    Every hour 0 * * * * Standard (recommended)
    Every 6 hours 0 */6 * * * Low volume, batch processing
    Daily 0 0 * * * Historical data collection

Test the integration

  1. In the Cloud Scheduler console, find your job.
  2. Click Force run to trigger the job manually.
  3. Wait a few seconds.
  4. Go to Cloud Run > Services.
  5. Click your function name zendesk-crm-collector.
  6. Click the Logs tab.
  7. Verify the function executed successfully. Look for the following:

    Processing resources: ['audit_logs', 'incremental_tickets']
    Audit logs page 1: Retrieved X records
    Incremental tickets page 1: Retrieved X records
    Successfully processed logs: [...]
    
  8. Go to Cloud Storage > Buckets.

  9. Click your bucket name.

  10. Navigate to the prefix folder zendesk/crm/.

  11. Verify that new .json files were created with the current timestamp.

If you see errors in the logs:

  • HTTP 401: Check API credentials in environment variables
  • HTTP 403: Verify account has required permissions (Admin role, Enterprise plan for audit logs)
  • HTTP 429: Rate limiting - function will automatically retry with exponential backoff
  • Missing environment variables: Check all required variables are set

Retrieve the Google SecOps service account

Google SecOps uses a unique service account to read data from your GCS bucket. You must grant this service account access to your bucket.

Get the service account email

  1. Go to SIEM Settings > Feeds.
  2. Click Add New Feed.
  3. Click Configure a single feed.
  4. In the Feed name field, enter a name for the feed (for example, Zendesk CRM logs).
  5. Select Google Cloud Storage V2 as the Source type.
  6. Select Zendesk CRM as the Log type.
  7. Click Get Service Account. A unique service account email is displayed, for example:

    chronicle-12345678@chronicle-gcp-prod.iam.gserviceaccount.com
    
  8. Copy this email address for use in the next step.

Grant IAM permissions to the Google SecOps service account

The Google SecOps service account needs Storage Object Viewer role on your GCS bucket.

  1. Go to Cloud Storage > Buckets.
  2. Click your bucket name.
  3. Go to the Permissions tab.
  4. Click Grant access.
  5. Provide the following configuration details:
    • Add principals: Paste the Google SecOps service account email.
    • Assign roles: Select Storage Object Viewer.
  6. Click Save.

Configure a feed in Google SecOps to ingest Zendesk CRM logs

  1. Go to SIEM Settings > Feeds.
  2. Click Add New Feed.
  3. Click Configure a single feed.
  4. In the Feed name field, enter a name for the feed (for example, Zendesk CRM logs).
  5. Select Google Cloud Storage V2 as the Source type.
  6. Select Zendesk CRM as the Log type.
  7. Click Next.
  8. Specify values for the following input parameters:

    • Storage bucket URL: Enter the GCS bucket URI with the prefix path:

      gs://zendesk-crm-logs/zendesk/crm/
      
      • Replace:

        • zendesk-crm-logs: Your GCS bucket name.
        • zendesk/crm/: Prefix/folder path where logs are stored.
    • Source deletion option: Select the deletion option according to your preference:

      • Never: Never deletes any files after transfers (recommended for testing).
      • Delete transferred files: Deletes files after successful transfer.
      • Delete transferred files and empty directories: Deletes files and empty directories after successful transfer.

    • Maximum File Age: Include files modified in the last number of days. Default is 180 days.

    • Asset namespace: The asset namespace.

    • Ingestion labels: The label to be applied to the events from this feed.

  9. Click Next.

  10. Review your new feed configuration in the Finalize screen, and then click Submit.

Need more help? Get answers from Community members and Google SecOps professionals.