收集 Harness IO 审核日志

支持的平台:

本文档介绍了如何使用 Google Cloud Storage 将 Harness IO 审核日志提取到 Google Security Operations。Harness 是一个持续交付和 DevOps 平台,提供用于软件交付、功能标志、云成本管理和安全测试的工具。

准备工作

请确保满足以下前提条件:

  • Google SecOps 实例
  • 已启用 Cloud Storage API 的 GCP 项目
  • 创建和管理 GCS 存储分区的权限
  • 管理 GCS 存储分区的 IAM 政策的权限
  • 创建 Cloud Run 服务、Pub/Sub 主题和 Cloud Scheduler 作业的权限
  • 对 Harness 具有特权访问权限,并有权执行以下操作:
    • 创建 API 密钥
    • 访问审核日志
    • 查看账号设置

收集 Harness API 凭据

在 Harness 中创建 API 密钥

  1. 登录 Harness 平台
  2. 点击您的用户个人资料
  3. 前往 My API Keys
  4. 点击 + API 密钥
  5. 提供以下配置详细信息:
    • 名称:输入一个描述性名称(例如 Google SecOps Integration)。
    • 说明:可选说明。
  6. 点击保存
  7. 点击 + 令牌以创建新令牌。
  8. 提供以下配置详细信息:
    • 名称:输入 Chronicle Feed Token
    • 设置失效时间:选择合适的失效时间或无失效时间(用于生产环境)。
  9. 点击 Generate Token(生成令牌)。
  10. 复制并妥善保存令牌值。此令牌将用作 x-api-key 标头值。

获取 Harness 账号 ID

  1. Harness 平台中,记下网址中的账号 ID

示例网址:https://app.harness.io/ng/account/YOUR_ACCOUNT_ID/...YOUR_ACCOUNT_ID 部分是您的账号标识符。

或者,前往账号设置 > 概览,查看您的账号标识符

  1. 复制并保存账号 ID,以便在 Cloud Run 函数中使用。

创建 Google Cloud Storage 存储分区

  1. 前往 Google Cloud 控制台
  2. 选择您的项目或创建新项目。
  3. 在导航菜单中,依次前往 Cloud Storage > 存储分区
  4. 点击创建存储分区
  5. 提供以下配置详细信息:

    设置
    为存储分区命名 输入一个全局唯一的名称(例如 harness-io-logs
    位置类型 根据您的需求进行选择(区域级、双区域级、多区域级)
    位置 选择相应位置(例如 us-central1
    存储类别 标准(建议用于经常访问的日志)
    访问权限控制 统一(推荐)
    保护工具 可选:启用对象版本控制或保留政策
  6. 点击创建

为 Cloud Run 函数创建服务账号

Cloud Run 函数需要一个服务账号,该账号具有向 GCS 存储分区写入内容以及被 Pub/Sub 调用的权限。

创建服务账号

  1. GCP 控制台中,依次前往 IAM 和管理 > 服务账号
  2. 点击创建服务账号
  3. 提供以下配置详细信息:
    • 服务账号名称:输入 harness-audit-collector-sa
    • 服务账号说明:输入 Service account for Cloud Run function to collect Harness IO audit logs
  4. 点击创建并继续
  5. 向此服务账号授予对项目的访问权限部分中,添加以下角色:
    1. 点击选择角色
    2. 搜索并选择 Storage Object Admin
    3. 点击 + 添加其他角色
    4. 搜索并选择 Cloud Run Invoker
    5. 点击 + 添加其他角色
    6. 搜索并选择 Cloud Functions Invoker
  6. 点击继续
  7. 点击完成

必须拥有这些角色,才能:

  • Storage Object Admin:将日志写入 GCS 存储分区并管理状态文件
  • Cloud Run Invoker:允许 Pub/Sub 调用函数
  • Cloud Functions Invoker:允许调用函数

授予对 GCS 存储分区的 IAM 权限

向服务账号授予对 GCS 存储分区的写入权限:

  1. 前往 Cloud Storage > 存储分区
  2. 点击您的存储分区名称。
  3. 前往权限标签页。
  4. 点击授予访问权限
  5. 提供以下配置详细信息:
    • 添加主账号:输入服务账号电子邮件地址(例如 harness-audit-collector-sa@PROJECT_ID.iam.gserviceaccount.com)。
    • 分配角色:选择 Storage Object Admin
  6. 点击保存

创建发布/订阅主题

创建一个 Pub/Sub 主题,供 Cloud Scheduler 发布消息,并供 Cloud Run 函数订阅。

  1. GCP 控制台中,前往 Pub/Sub > 主题
  2. 点击创建主题
  3. 提供以下配置详细信息:
    • 主题 ID:输入 harness-audit-trigger
    • 将其他设置保留为默认值。
  4. 点击创建

创建 Cloud Run 函数以收集日志

Cloud Run 函数由来自 Cloud Scheduler 的 Pub/Sub 消息触发,以从 Harness API 中提取日志并将其写入 GCS。

  1. GCP 控制台中,前往 Cloud Run
  2. 点击创建服务
  3. 选择函数(使用内嵌编辑器创建函数)。
  4. 配置部分中,提供以下配置详细信息:

    设置
    Service 名称 harness-audit-collector
    区域 选择与您的 GCS 存储分区匹配的区域(例如 us-central1
    运行时 选择 Python 3.12 或更高版本
  5. 触发器(可选)部分中:

    1. 点击 + 添加触发器
    2. 选择 Cloud Pub/Sub
    3. 选择 Cloud Pub/Sub 主题中,选择 Pub/Sub 主题 (harness-audit-trigger)。
    4. 点击保存
  6. 身份验证部分中:

    1. 选择需要进行身份验证
    2. 检查 Identity and Access Management (IAM)
  7. 向下滚动并展开容器、网络、安全性

  8. 前往安全标签页:

    • 服务账号:选择服务账号 (harness-audit-collector-sa)。
  9. 前往容器标签页:

    1. 点击变量和密钥
    2. 为每个环境变量点击 + 添加变量
    变量名称 示例值 说明
    HARNESS_ACCOUNT_ID 您的 Harness 账号 ID Harness 中的账号标识符
    HARNESS_API_KEY 您的 API 密钥令牌 具有 audit:read 权限的令牌
    GCS_BUCKET harness-io-logs GCS 存储分区名称
    GCS_PREFIX harness/audit GCS 对象的前缀
    STATE_KEY harness/audit/state.json GCS 中的状态文件路径
    • 可选环境变量
    变量名称 默认值 说明
    HARNESS_API_BASE https://app.harness.io Harness API 基础网址(针对自托管实例的替换项)
    PAGE_SIZE 50 每页的活动数(最多 100 个)
    START_MINUTES_BACK 60 初始回溯周期(以分钟为单位)
    FILTER_MODULES 以英文逗号分隔的模块(例如CD,CI,CE)
    FILTER_ACTIONS 以英文逗号分隔的操作(例如,CREATE,UPDATE,DELETE)
    STATIC_FILTER 预定义过滤条件:EXCLUDE_LOGIN_EVENTSEXCLUDE_SYSTEM_EVENTS
    MAX_RETRIES 3 速率限制的重试次数上限
  10. 变量和密钥标签页中,向下滚动到请求

    • 请求超时:输入 600 秒(10 分钟)。
  11. 前往容器中的设置标签页:

    • 资源部分中:
      • 内存:选择 512 MiB 或更高值。
      • CPU:选择 1
    • 点击完成
  12. 滚动到执行环境

    • 选择默认(推荐)。
  13. 修订版本扩缩部分中:

    • 实例数下限:输入 0
    • 实例数上限:输入 100(或根据预期负载进行调整)。
  14. 点击创建

  15. 等待服务创建完成(1-2 分钟)。

  16. 创建服务后,系统会自动打开内嵌代码编辑器

添加函数代码

  1. 函数入口点中输入 main
  2. 在内嵌代码编辑器中,创建两个文件:

    • 第一个文件:main.py:
    import functions_framework
    from google.cloud import storage
    import json
    import os
    import urllib3
    from datetime import datetime, timedelta, timezone
    import time
    
    # Initialize HTTP client
    http = urllib3.PoolManager()
    
    # Initialize Storage client
    storage_client = storage.Client()
    
    # Configuration from Environment Variables
    API_BASE = os.environ.get("HARNESS_API_BASE", "https://app.harness.io").rstrip("/")
    ACCOUNT_ID = os.environ["HARNESS_ACCOUNT_ID"]
    API_KEY = os.environ["HARNESS_API_KEY"]
    BUCKET = os.environ["GCS_BUCKET"]
    PREFIX = os.environ.get("GCS_PREFIX", "harness/audit").strip("/")
    STATE_KEY = os.environ.get("STATE_KEY", "harness/audit/state.json")
    PAGE_SIZE = min(int(os.environ.get("PAGE_SIZE", "50")), 100)
    START_MINUTES_BACK = int(os.environ.get("START_MINUTES_BACK", "60"))
    
    # Optional filters
    FILTER_MODULES = os.environ.get("FILTER_MODULES", "").split(",") if os.environ.get("FILTER_MODULES") else None
    FILTER_ACTIONS = os.environ.get("FILTER_ACTIONS", "").split(",") if os.environ.get("FILTER_ACTIONS") else None
    STATIC_FILTER = os.environ.get("STATIC_FILTER")
    MAX_RETRIES = int(os.environ.get("MAX_RETRIES", "3"))
    
    # HTTP headers for Harness API
    HDRS = {
        "x-api-key": API_KEY,
        "Content-Type": "application/json",
        "Accept": "application/json",
    }
    
    def read_state(bucket):
        """Read checkpoint state from GCS."""
        try:
            blob = bucket.blob(STATE_KEY)
            if blob.exists():
                state_data = blob.download_as_text()
                state = json.loads(state_data)
                since_ms = state.get("since")
                page_token = state.get("pageToken")
                print(f"State loaded: since={since_ms}, pageToken={page_token}")
                return since_ms, page_token
        except Exception as e:
            print(f"Warning: Could not load state: {e}")
    
        print("No state file found, starting fresh collection")
        start_time = datetime.now(timezone.utc) - timedelta(minutes=START_MINUTES_BACK)
        since_ms = int(start_time.timestamp() * 1000)
        print(f"Initial since timestamp: {since_ms} ({start_time.isoformat()})")
        return since_ms, None
    
    def write_state(bucket, since_ms, page_token=None):
        """Write checkpoint state to GCS."""
        state = {
            "since": since_ms,
            "pageToken": page_token,
            "lastRun": int(time.time() * 1000),
            "lastRunISO": datetime.now(timezone.utc).isoformat()
        }
        try:
            blob = bucket.blob(STATE_KEY)
            blob.upload_from_string(
                json.dumps(state, indent=2),
                content_type="application/json"
            )
            print(f"State saved: since={since_ms}, pageToken={page_token}")
        except Exception as e:
            print(f"Error writing state: {e}")
            raise
    
    def fetch_harness_audits(since_ms, page_token=None, retry_count=0):
        """
        Fetch audit logs from Harness API with retry logic.
        API Endpoint: POST /audit/api/audits/listV2
        """
        try:
            # Build URL with query parameters
            url = (
                f"{API_BASE}/audit/api/audits/listV2"
                f"?accountIdentifier={ACCOUNT_ID}"
                f"&pageSize={PAGE_SIZE}"
            )
            if page_token:
                url += f"&pageToken={page_token}"
    
            print(f"Fetching from: {url[:100]}...")
    
            # Build request body with time filter and optional filters
            body_data = {
                "startTime": since_ms,
                "endTime": int(time.time() * 1000),
                "filterType": "Audit"
            }
    
            if FILTER_MODULES:
                body_data["modules"] = [m.strip() for m in FILTER_MODULES if m.strip()]
                print(f"Applying module filter: {body_data['modules']}")
    
            if FILTER_ACTIONS:
                body_data["actions"] = [a.strip() for a in FILTER_ACTIONS if a.strip()]
                print(f"Applying action filter: {body_data['actions']}")
    
            if STATIC_FILTER:
                body_data["staticFilter"] = STATIC_FILTER
                print(f"Applying static filter: {STATIC_FILTER}")
    
            # Make POST request
            response = http.request(
                'POST',
                url,
                body=json.dumps(body_data).encode('utf-8'),
                headers=HDRS,
                timeout=30.0
            )
    
            resp_data = json.loads(response.data.decode('utf-8'))
    
            if "status" not in resp_data:
                print(f"Response missing 'status' field: {response.data[:200]}")
    
            # Check response status
            if resp_data.get("status") != "SUCCESS":
                error_msg = resp_data.get("message", "Unknown error")
                raise Exception(f"API returned status: {resp_data.get('status')} - {error_msg}")
    
            # Extract data from response structure
            data_obj = resp_data.get("data", {})
            if not data_obj:
                print("Response 'data' object is empty or missing")
    
            events = data_obj.get("content", [])
            has_next = data_obj.get("hasNext", False)
            next_token = data_obj.get("pageToken")
    
            print(f"API response: {len(events)} events, hasNext={has_next}, pageToken={next_token}")
    
            if not events and data_obj:
                print(f"Empty events but data present. Data keys: {list(data_obj.keys())}")
    
            return {
                "events": events,
                "hasNext": has_next,
                "pageToken": next_token
            }
    
        except Exception as e:
            if hasattr(e, 'status') and e.status == 429:
                retry_after = 60
                print(f"Rate limit exceeded. Retry after {retry_after} seconds (attempt {retry_count + 1}/{MAX_RETRIES})")
                if retry_count < MAX_RETRIES:
                    print(f"Waiting {retry_after} seconds before retry...")
                    time.sleep(retry_after)
                    print(f"Retrying request (attempt {retry_count + 2}/{MAX_RETRIES})")
                    return fetch_harness_audits(since_ms, page_token, retry_count + 1)
                else:
                    raise Exception(f"Max retries ({MAX_RETRIES}) exceeded for rate limiting")
            print(f"Error in fetch_harness_audits: {e}")
            raise
    
    def upload_to_gcs(bucket, events):
        """Upload audit events to GCS in JSONL format."""
        if not events:
            print("No events to upload")
            return None
    
        try:
            # Create JSONL content (one JSON object per line)
            jsonl_lines = [json.dumps(event) for event in events]
            jsonl_content = "\n".join(jsonl_lines)
    
            # Generate GCS key with timestamp
            timestamp = datetime.now(timezone.utc)
            key = (
                f"{PREFIX}/"
                f"{timestamp:%Y/%m/%d}/"
                f"harness-audit-{timestamp:%Y%m%d-%H%M%S}.jsonl"
            )
    
            # Upload to GCS
            blob = bucket.blob(key)
            blob.upload_from_string(
                jsonl_content,
                content_type="application/x-ndjson"
            )
            blob.metadata = {
                "event-count": str(len(events)),
                "source": "harness-audit-function",
                "collection-time": timestamp.isoformat()
            }
            blob.patch()
    
            print(f"Uploaded {len(events)} events to gs://{BUCKET}/{key}")
            return key
    
        except Exception as e:
            print(f"Error uploading to GCS: {e}")
            raise
    
    @functions_framework.cloud_event
    def main(cloud_event):
        """
        Cloud Run function triggered by Pub/Sub to fetch Harness audit logs and write to GCS.
    
        Args:
            cloud_event: CloudEvent object containing Pub/Sub message
        """
        print("=== Harness Audit Collection Started ===")
        print(f"Configuration: API_BASE={API_BASE}, ACCOUNT_ID={ACCOUNT_ID[:8]}..., PAGE_SIZE={PAGE_SIZE}")
    
        if FILTER_MODULES:
            print(f"Module filter enabled: {FILTER_MODULES}")
        if FILTER_ACTIONS:
            print(f"Action filter enabled: {FILTER_ACTIONS}")
        if STATIC_FILTER:
            print(f"Static filter enabled: {STATIC_FILTER}")
    
        try:
            # Get GCS bucket
            bucket = storage_client.bucket(BUCKET)
    
            # Step 1: Read checkpoint state
            since_ms, page_token = read_state(bucket)
    
            if page_token:
                print("Resuming pagination from saved pageToken")
            else:
                since_dt = datetime.fromtimestamp(since_ms / 1000, tz=timezone.utc)
                print(f"Starting new collection from: {since_dt.isoformat()}")
    
            # Step 2: Collect all events with pagination
            all_events = []
            current_page_token = page_token
            page_count = 0
            max_pages = 100
            has_next = True
    
            while has_next and page_count < max_pages:
                page_count += 1
                print(f"--- Fetching page {page_count} ---")
    
                # Fetch one page of results
                result = fetch_harness_audits(since_ms, current_page_token)
    
                # Extract events
                events = result.get("events", [])
                all_events.extend(events)
                print(f"Page {page_count}: {len(events)} events (total: {len(all_events)})")
    
                # Check pagination status
                has_next = result.get("hasNext", False)
                current_page_token = result.get("pageToken")
    
                if not has_next:
                    print("Pagination complete (hasNext=False)")
                    break
    
                if not current_page_token:
                    print("hasNext=True but no pageToken, stopping pagination")
                    break
    
                # Small delay between pages to avoid rate limiting
                time.sleep(0.5)
    
            if page_count >= max_pages:
                print(f"Reached max pages limit ({max_pages}), stopping")
    
            # Step 3: Upload collected events to GCS
            if all_events:
                gcs_key = upload_to_gcs(bucket, all_events)
                print(f"Successfully uploaded {len(all_events)} total events")
            else:
                print("No new events to upload")
                gcs_key = None
    
            # Step 4: Update checkpoint state
            if not has_next:
                # Pagination complete - update since to current time for next run
                new_since = int(time.time() * 1000)
                write_state(bucket, new_since, None)
                print(f"Pagination complete, state updated with new since={new_since}")
            else:
                # Pagination incomplete - save pageToken for continuation
                write_state(bucket, since_ms, current_page_token)
                print("Pagination incomplete, saved pageToken for next run")
    
            # Step 5: Log result
            result = {
                "status": "Success",
                "eventsCollected": len(all_events),
                "pagesProcessed": page_count,
                "paginationComplete": not has_next,
                "gcsKey": gcs_key,
                "filters": {
                    "modules": FILTER_MODULES,
                    "actions": FILTER_ACTIONS,
                    "staticFilter": STATIC_FILTER
                }
            }
            print(f"Collection completed: {json.dumps(result)}")
    
        except Exception as e:
            print(f"Collection failed: {e}")
            raise
        finally:
            print("=== Harness Audit Collection Finished ===")
    
    • 第二个文件:requirements.txt:
    functions-framework==3.*
    google-cloud-storage==2.*
    urllib3>=2.0.0
    
  3. 点击部署以保存并部署该函数。

  4. 等待部署完成(2-3 分钟)。

创建 Cloud Scheduler 作业

Cloud Scheduler 会定期向 Pub/Sub 主题发布消息,从而触发 Cloud Run 函数。

  1. GCP Console 中,前往 Cloud Scheduler
  2. 点击创建作业
  3. 提供以下配置详细信息:

    设置
    名称 harness-audit-hourly
    区域 选择与 Cloud Run 函数相同的区域
    频率 0 * * * *(每小时一次,在整点时)
    时区 选择时区(建议选择世界协调时间 [UTC])
    目标类型 Pub/Sub
    主题 选择 Pub/Sub 主题 (harness-audit-trigger)
    消息正文 {}(空 JSON 对象)
  4. 点击创建

时间表频率选项

  • 根据日志量和延迟时间要求选择频次:

    频率 Cron 表达式 使用场景
    每隔 5 分钟 */5 * * * * 高容量、低延迟
    每隔 15 分钟 */15 * * * * 搜索量中等
    每小时 0 * * * * 标准(推荐)
    每 6 小时 0 */6 * * * 量小、批处理
    每天 0 0 * * * 历史数据收集

测试集成

  1. Cloud Scheduler 控制台中,找到您的作业。
  2. 点击强制运行以手动触发作业。
  3. 等待几秒钟。
  4. 前往 Cloud Run > 服务
  5. 点击函数名称 (harness-audit-collector)。
  6. 点击日志标签页。
  7. 验证函数是否已成功执行。查找以下项:

    === Harness Audit Collection Started ===
    State loaded: since=... or No state file found, starting fresh collection
    --- Fetching page 1 ---
    API response: X events, hasNext=...
    Uploaded X events to gs://harness-io-logs/harness/audit/...
    Successfully processed X records
    === Harness Audit Collection Finished ===
    
  8. 前往 Cloud Storage > 存储分区

  9. 点击您的存储分区名称。

  10. 前往前缀文件夹 (harness/audit/)。

  11. 验证是否已创建具有当前时间戳的新 .jsonl 文件。

如果您在日志中看到错误,请执行以下操作:

  • HTTP 401:检查环境变量中的 API 凭据
  • HTTP 403:验证账号是否具有所需权限
  • HTTP 429:速率限制 - 函数将自动重试并进行退避
  • 缺少环境变量:检查是否已设置所有必需的变量

检索 Google SecOps 服务账号

Google SecOps 使用唯一的服务账号从您的 GCS 存储分区中读取数据。您必须授予此服务账号对您的存储分区的访问权限。

获取服务账号电子邮件地址

  1. 依次前往 SIEM 设置 > Feed
  2. 点击添加新 Feed
  3. 点击配置单个 Feed
  4. Feed 名称字段中,输入 Feed 的名称(例如 Harness Audit Logs)。
  5. 选择 Google Cloud Storage V2 作为来源类型
  6. 选择 Harness IO 作为日志类型
  7. 点击获取服务账号。系统会显示一个唯一的服务账号电子邮件地址,例如:

    chronicle-12345678@chronicle-gcp-prod.iam.gserviceaccount.com
    
  8. 复制此电子邮件地址,以便在下一步中使用。

向 Google SecOps 服务账号授予 IAM 权限

Google SecOps 服务账号需要对您的 GCS 存储分区具有 Storage Object Viewer 角色。

  1. 前往 Cloud Storage > 存储分区
  2. 点击您的存储分区名称。
  3. 前往权限标签页。
  4. 点击授予访问权限
  5. 提供以下配置详细信息:
    • 添加主账号:粘贴 Google SecOps 服务账号电子邮件地址。
    • 分配角色:选择 Storage Object Viewer
  6. 点击保存

在 Google SecOps 中配置 Feed 以提取 Harness IO 日志

  1. 依次前往 SIEM 设置 > Feed
  2. 点击添加新 Feed
  3. 点击配置单个 Feed
  4. Feed 名称字段中,输入 Feed 的名称(例如 Harness Audit Logs)。
  5. 选择 Google Cloud Storage V2 作为来源类型
  6. 选择 Harness IO 作为日志类型
  7. 点击下一步
  8. 为以下输入参数指定值:

    • 存储分区网址:输入带有前缀路径的 GCS 存储分区 URI:

      gs://harness-io-logs/harness/audit/
      
        • harness-io-logs:您的 GCS 存储分区名称。
        • harness/audit:存储日志的前缀/文件夹路径。
      • 示例

        • 根存储分区:gs://company-logs/
        • 带前缀:gs://company-logs/harness-logs/
        • 使用子文件夹:gs://company-logs/harness/audit/
    • 来源删除选项:根据您的偏好选择删除选项:

      • 永不:永不删除转移后的任何文件(建议用于测试)。
      • 删除已转移的文件:在成功转移后删除文件。
      • 删除已转移的文件和空目录:在成功转移后删除文件和空目录。

    • 文件存在时间上限:包含在过去指定天数内修改的文件。默认值为 180 天。

    • 资产命名空间资产命名空间。输入 harness.audit

    • 注入标签:要应用于此 Feed 中事件的标签。

  9. 点击下一步

  10. 最终确定界面中查看新的 Feed 配置,然后点击提交

需要更多帮助?获得社区成员和 Google SecOps 专业人士的解答。