TeamViewer 로그 수집

다음에서 지원:

이 문서에서는 Google Cloud Storage를 사용하여 TeamViewer 로그를 Google Security Operations로 수집하는 방법을 설명합니다. 파서는 JSON 형식 로그에서 감사 이벤트를 추출합니다. 이 함수는 이벤트 세부정보를 반복하여 특정 속성을 통합 데이터 모델 (UDM) 필드에 매핑하고, 참여자 및 발표자 정보를 처리하고, 사용자 활동에 따라 이벤트를 분류합니다. 파서는 라벨 병합, 타임스탬프를 표준화된 형식으로 변환과 같은 데이터 변환도 실행합니다.

시작하기 전에

다음 기본 요건이 충족되었는지 확인합니다.

  • Google SecOps 인스턴스
  • Cloud Storage API가 사용 설정된 GCP 프로젝트
  • GCS 버킷을 만들고 관리할 수 있는 권한
  • GCS 버킷의 IAM 정책을 관리할 수 있는 권한
  • Cloud Run 서비스, Pub/Sub 주제, Cloud Scheduler 작업을 만들 수 있는 권한
  • TeamViewer 관리 콘솔에 대한 액세스 권한
  • TeamViewer Business, Premium, Corporate 또는 Tensor 라이선스 (API 액세스에 필요)

Google Cloud Storage 버킷 만들기

  1. Google Cloud Console로 이동합니다.
  2. 프로젝트를 선택하거나 새 프로젝트를 만듭니다.
  3. 탐색 메뉴에서 Cloud Storage> 버킷으로 이동합니다.
  4. 버킷 만들기를 클릭합니다.
  5. 다음 구성 세부정보를 제공합니다.

    설정
    버킷 이름 지정 전역적으로 고유한 이름 (예: teamviewer-logs)을 입력합니다.
    위치 유형 필요에 따라 선택 (리전, 이중 리전, 멀티 리전)
    위치 위치를 선택합니다 (예: us-central1).
    스토리지 클래스 Standard (자주 액세스하는 로그에 권장)
    액세스 제어 균일 (권장)
    보호 도구 선택사항: 객체 버전 관리 또는 보관 정책 사용 설정
  6. 만들기를 클릭합니다.

TeamViewer 기본 요건 가져오기

  1. https://login.teamviewer.com/에서 TeamViewer Management Console에 로그인합니다.
  2. 오른쪽 상단에 있는 사용자 아이콘을 클릭하고 프로필 수정을 선택합니다.
  3. 을 선택합니다.
  4. 스크립트 토큰 만들기를 클릭합니다.
  5. 다음 구성 세부정보를 제공합니다.
    • 토큰 이름: 설명이 포함된 이름 (예: Google SecOps Integration)을 입력합니다.
    • 권한: 다음 권한을 선택합니다.
      • 계정 관리 > 계정 데이터 보기
      • 세션 관리 > 세션 데이터 보기
      • 연결 보고 > 연결 보고서 보기
  6. 만들기를 클릭합니다.
  7. 생성된 스크립트 토큰을 복사하여 안전한 위치에 저장합니다.

  8. TeamViewer API 기본 URL을 기록합니다(https://webapi.teamviewer.com/api/v1).

권한 확인

계정에 필요한 권한이 있는지 확인하려면 다음 단계를 따르세요.

  1. TeamViewer 관리 콘솔에 로그인합니다.
  2. 프로필 수정 >으로 이동합니다.
  3. 목록에서 스크립트 토큰을 찾습니다.
  4. 연결 보고 > 연결 보고서 보기가 사용 설정되어 있는지 확인합니다.
  5. 이 권한이 사용 설정되어 있지 않으면 토큰을 수정하고 필요한 권한을 추가합니다.

API 액세스 테스트

  • 통합을 진행하기 전에 사용자 인증 정보를 테스트하세요.

    # Replace with your actual script token
    SCRIPT_TOKEN="your-script-token"
    API_BASE="https://webapi.teamviewer.com/api/v1"
    
    # Test API access
    curl -v -H "Authorization: Bearer ${SCRIPT_TOKEN}" \
      -H "Accept: application/json" \
      "${API_BASE}/reports/connections?from_date=2024-01-01T00:00:00Z&to_date=2024-01-01T01:00:00Z"
    

JSON 데이터와 함께 200 응답을 받으면 사용자 인증 정보가 올바르게 구성된 것입니다.

Cloud Run 함수의 서비스 계정 만들기

Cloud Run 함수에는 GCS 버킷에 쓸 수 있고 Pub/Sub에서 호출할 수 있는 권한이 있는 서비스 계정이 필요합니다.

서비스 계정 만들기

  1. GCP 콘솔에서 IAM 및 관리자 > 서비스 계정으로 이동합니다.
  2. 서비스 계정 만들기를 클릭합니다.
  3. 다음 구성 세부정보를 제공합니다.
    • 서비스 계정 이름: teamviewer-collector-sa을 입력합니다.
    • 서비스 계정 설명: Service account for Cloud Run function to collect TeamViewer logs을 입력합니다.
  4. 만들고 계속하기를 클릭합니다.
  5. 이 서비스 계정에 프로젝트에 대한 액세스 권한 부여 섹션에서 다음 역할을 추가합니다.
    1. 역할 선택을 클릭합니다.
    2. 스토리지 객체 관리자를 검색하여 선택합니다.
    3. + 다른 역할 추가를 클릭합니다.
    4. Cloud Run 호출자를 검색하여 선택합니다.
    5. + 다른 역할 추가를 클릭합니다.
    6. Cloud Functions 호출자를 검색하여 선택합니다.
  6. 계속을 클릭합니다.
  7. 완료를 클릭합니다.

이러한 역할은 다음 작업에 필요합니다. - 스토리지 객체 관리자: GCS 버킷에 로그를 쓰고 상태 파일을 관리합니다. - Cloud Run 호출자: Pub/Sub에서 함수를 호출하도록 허용합니다. - Cloud Functions 호출자: 함수 호출을 허용합니다.

GCS 버킷에 대한 IAM 권한 부여

GCS 버킷에 대한 쓰기 권한을 서비스 계정에 부여합니다.

  1. Cloud Storage> 버킷으로 이동합니다.
  2. 버킷 이름 (예: teamviewer-logs)을 클릭합니다.
  3. 권한 탭으로 이동합니다.
  4. 액세스 권한 부여를 클릭합니다.
  5. 다음 구성 세부정보를 제공합니다.
    • 주 구성원 추가: 서비스 계정 이메일 (예: teamviewer-collector-sa@PROJECT_ID.iam.gserviceaccount.com)을 입력합니다.
    • 역할 할당: 스토리지 객체 관리자를 선택합니다.
  6. 저장을 클릭합니다.

게시/구독 주제 만들기

Cloud Scheduler가 게시하고 Cloud Run 함수가 구독할 Pub/Sub 주제를 만듭니다.

  1. GCP Console에서 Pub/Sub > 주제로 이동합니다.
  2. 주제 만들기를 클릭합니다.
  3. 다음 구성 세부정보를 제공합니다.
    • 주제 ID: teamviewer-logs-trigger를 입력합니다.
    • 다른 설정은 기본값으로 둡니다.
  4. 만들기를 클릭합니다.

로그를 수집하는 Cloud Run 함수 만들기

Cloud Run 함수는 Cloud Scheduler의 Pub/Sub 메시지에 의해 트리거되어 TeamViewer API에서 로그를 가져오고 GCS에 씁니다.

  1. GCP 콘솔에서 Cloud Run으로 이동합니다.
  2. 서비스 만들기를 클릭합니다.
  3. 함수를 선택합니다 (인라인 편집기를 사용하여 함수 만들기).
  4. 구성 섹션에서 다음 구성 세부정보를 제공합니다.

    설정
    서비스 이름 teamviewer-logs-collector
    리전 GCS 버킷과 일치하는 리전을 선택합니다 (예: us-central1).
    런타임 Python 3.12 이상 선택
  5. 트리거 (선택사항) 섹션에서 다음을 수행합니다.

    1. + 트리거 추가를 클릭합니다.
    2. Cloud Pub/Sub를 선택합니다.
    3. Cloud Pub/Sub 주제 선택에서 Pub/Sub 주제 (teamviewer-logs-trigger)를 선택합니다.
    4. 저장을 클릭합니다.
  6. 인증 섹션에서 다음을 구성합니다.

    1. 인증 필요를 선택합니다.
    2. ID 및 액세스 관리 (IAM)를 확인합니다.
  7. 아래로 스크롤하고 컨테이너, 네트워킹, 보안을 펼칩니다.

  8. 보안 탭으로 이동합니다.

    • 서비스 계정: 서비스 계정 (teamviewer-collector-sa)을 선택합니다.
  9. 컨테이너 탭으로 이동합니다.

    1. 변수 및 보안 비밀을 클릭합니다.
    2. 각 환경 변수에 대해 + 변수 추가를 클릭합니다.
    변수 이름 예시 값
    GCS_BUCKET teamviewer-logs
    GCS_PREFIX teamviewer/audit/
    STATE_KEY teamviewer/audit/state.json
    WINDOW_SECONDS 3600
    HTTP_TIMEOUT 60
    MAX_RETRIES 3
    USER_AGENT teamviewer-to-gcs/1.0
    SCRIPT_TOKEN your-script-token (TeamViewer 기본 요건에서)
    API_BASE_URL https://webapi.teamviewer.com/api/v1
  10. 변수 및 보안 비밀 섹션에서 요청까지 아래로 스크롤합니다.

    • 요청 제한 시간: 600초 (10분)를 입력합니다.
  11. 설정 탭으로 이동합니다.

    • 리소스 섹션에서 다음을 수행합니다.
      • 메모리: 512MiB 이상을 선택합니다.
      • CPU: 1을 선택합니다.
  12. 버전 확장 섹션에서 다음을 수행합니다.

    • 최소 인스턴스 수: 0를 입력합니다.
    • 최대 인스턴스 수: 100을 입력합니다 (또는 예상 부하에 따라 조정).
  13. 만들기를 클릭합니다.

  14. 서비스가 생성될 때까지 기다립니다 (1~2분).

  15. 서비스가 생성되면 인라인 코드 편집기가 자동으로 열립니다.

함수 코드 추가

  1. 함수 진입점main을 입력합니다.
  2. 인라인 코드 편집기에서 다음 두 파일을 만듭니다.

    • 첫 번째 파일: main.py:
    import functions_framework
    from google.cloud import storage
    import json
    import os
    import urllib.request
    import urllib.parse
    import urllib.error
    from datetime import datetime, timezone
    import time
    import uuid
    
    # Initialize Storage client
    storage_client = storage.Client()
    
    @functions_framework.cloud_event
    def main(cloud_event):
        """
        Cloud Run function triggered by Pub/Sub to fetch TeamViewer audit logs and write to GCS.
    
        Args:
            cloud_event: CloudEvent object containing Pub/Sub message
        """
    
        # Get environment variables
        bucket_name = os.environ.get('GCS_BUCKET')
        prefix = os.environ.get('GCS_PREFIX', 'teamviewer/audit/')
        state_key = os.environ.get('STATE_KEY', 'teamviewer/audit/state.json')
        window_sec = int(os.environ.get('WINDOW_SECONDS', '3600'))
        http_timeout = int(os.environ.get('HTTP_TIMEOUT', '60'))
        max_retries = int(os.environ.get('MAX_RETRIES', '3'))
        user_agent = os.environ.get('USER_AGENT', 'teamviewer-to-gcs/1.0')
    
        # TeamViewer API credentials
        api_base_url = os.environ.get('API_BASE_URL')
        script_token = os.environ.get('SCRIPT_TOKEN')
    
        if not all([bucket_name, api_base_url, script_token]):
            print('Error: Missing required environment variables')
            return
    
        try:
            # Get GCS bucket
            bucket = storage_client.bucket(bucket_name)
    
            # Load state (last processed timestamp)
            state = load_state(bucket, state_key)
            now = time.time()
            from_ts = float(state.get('last_to_ts') or (now - window_sec))
            to_ts = now
    
            print(f'Fetching TeamViewer audit data from {iso_format(from_ts)} to {iso_format(to_ts)}')
    
            # Build audit API URL
            url = build_audit_url(api_base_url, from_ts, to_ts)
    
            print(f'Fetching TeamViewer audit data from: {url}')
    
            # Fetch audit data with retries and pagination
            all_records = []
            offset_id = None
    
            while True:
                blob_data, content_type, next_offset = fetch_audit_data(
                    url, script_token, user_agent, http_timeout, max_retries, offset_id
                )
    
                # Validate JSON data
                try:
                    audit_data = json.loads(blob_data)
                    records = audit_data.get('records', [])
                    all_records.extend(records)
                    print(f"Retrieved {len(records)} audit records (total: {len(all_records)})")
    
                    # Check for pagination
                    if next_offset and len(records) == 1000:
                        offset_id = next_offset
                        print(f"Fetching next page with offset_id: {offset_id}")
                    else:
                        break
    
                except json.JSONDecodeError as e:
                    print(f"Warning: Invalid JSON received: {e}")
                    break
    
            if all_records:
                # Write to GCS
                key = put_audit_data(bucket, prefix, json.dumps({'records': all_records}), 
                                   'application/json', from_ts, to_ts)
                print(f'Successfully wrote {len(all_records)} audit records to {key}')
            else:
                print('No audit records found')
    
            # Update state
            state['last_to_ts'] = to_ts
            state['last_successful_run'] = now
            save_state(bucket, state_key, state)
    
        except Exception as e:
            print(f'Error processing TeamViewer logs: {str(e)}')
            raise
    
    def load_state(bucket, key):
        """Load state from GCS."""
        try:
            blob = bucket.blob(key)
            if blob.exists():
                state_data = blob.download_as_text()
                return json.loads(state_data)
        except Exception as e:
            print(f'Warning: Could not load state: {str(e)}')
        return {}
    
    def save_state(bucket, key, state):
        """Save state to GCS."""
        try:
            blob = bucket.blob(key)
            blob.upload_from_string(
                json.dumps(state, separators=(',', ':')),
                content_type='application/json'
            )
        except Exception as e:
            print(f'Warning: Could not save state: {str(e)}')
    
    def iso_format(ts):
        """Convert Unix timestamp to ISO 8601 format."""
        return time.strftime('%Y-%m-%dT%H:%M:%SZ', time.gmtime(ts))
    
    def build_audit_url(api_base_url, from_ts, to_ts):
        """Build URL for TeamViewer audit API endpoint."""
        base_endpoint = f"{api_base_url.rstrip('/')}/reports/connections"
        params = {
            'from_date': iso_format(from_ts),
            'to_date': iso_format(to_ts)
        }
        query_string = urllib.parse.urlencode(params)
        return f"{base_endpoint}?{query_string}"
    
    def fetch_audit_data(url, script_token, user_agent, http_timeout, max_retries, offset_id=None):
        """Fetch audit data from TeamViewer API with retries and pagination support."""
        # Add offset_id parameter if provided
        if offset_id:
            separator = '&' if '?' in url else '?'
            url = f"{url}{separator}offset_id={offset_id}"
    
        attempt = 0
        while True:
            req = urllib.request.Request(url, method='GET')
            req.add_header('User-Agent', user_agent)
            req.add_header('Authorization', f'Bearer {script_token}')
            req.add_header('Accept', 'application/json')
    
            try:
                with urllib.request.urlopen(req, timeout=http_timeout) as r:
                    response_data = r.read()
                    content_type = r.headers.get('Content-Type') or 'application/json'
    
                    # Extract next_offset from response if present
                    try:
                        data = json.loads(response_data)
                        next_offset = data.get('next_offset')
                    except:
                        next_offset = None
    
                    return response_data, content_type, next_offset
    
            except urllib.error.HTTPError as e:
                if e.code == 429:
                    attempt += 1
                    print(f'Rate limited (429) on attempt {attempt}')
                    if attempt > max_retries:
                        raise
                    time.sleep(min(60, 2 ** attempt) + (time.time() % 1))
                else:
                    print(f'HTTP error {e.code}: {e.reason}')
                    raise
            except urllib.error.URLError as e:
                attempt += 1
                print(f'URL error on attempt {attempt}: {e}')
                if attempt > max_retries:
                    raise
                time.sleep(min(60, 2 ** attempt) + (time.time() % 1))
    
    def put_audit_data(bucket, prefix, blob_data, content_type, from_ts, to_ts):
        """Write audit data to GCS."""
        ts_path = time.strftime('%Y/%m/%d', time.gmtime(to_ts))
        uniq = f"{int(time.time() * 1e6)}_{uuid.uuid4().hex[:8]}"
        key = f"{prefix}{ts_path}/teamviewer_audit_{int(from_ts)}_{int(to_ts)}_{uniq}.json"
    
        blob = bucket.blob(key)
        blob.metadata = {
            'source': 'teamviewer-audit',
            'from_timestamp': str(int(from_ts)),
            'to_timestamp': str(int(to_ts))
        }
        blob.upload_from_string(blob_data, content_type=content_type)
    
        return key
    
    • 두 번째 파일: requirements.txt:
    functions-framework==3.*
    google-cloud-storage==2.*
    
  3. 배포를 클릭하여 함수를 저장하고 배포합니다.

  4. 배포가 완료될 때까지 기다립니다 (2~3분).

Cloud Scheduler 작업 만들기

Cloud Scheduler는 일정 간격으로 Pub/Sub 주제에 메시지를 게시하여 Cloud Run 함수를 트리거합니다.

  1. GCP Console에서 Cloud Scheduler로 이동합니다.
  2. 작업 만들기를 클릭합니다.
  3. 다음 구성 세부정보를 제공합니다.

    설정
    이름 teamviewer-logs-collector-hourly
    리전 Cloud Run 함수와 동일한 리전 선택
    주파수 0 * * * * (매시간 정각)
    시간대 시간대 선택 (UTC 권장)
    타겟 유형 Pub/Sub
    주제 Pub/Sub 주제 (teamviewer-logs-trigger)를 선택합니다.
    메일 본문 {} (빈 JSON 객체)
  4. 만들기를 클릭합니다.

일정 빈도 옵션

  • 로그 볼륨 및 지연 시간 요구사항에 따라 빈도를 선택합니다.

    빈도 크론 표현식 사용 사례
    5분마다 */5 * * * * 대용량, 저지연
    15분마다 */15 * * * * 검색량 보통
    1시간마다 0 * * * * 일반(권장)
    6시간마다 0 */6 * * * 양이 적은 일괄 처리
    매일 0 0 * * * 이전 데이터 수집

통합 테스트

  1. Cloud Scheduler 콘솔에서 작업을 찾습니다 (teamviewer-logs-collector-hourly).
  2. 강제 실행을 클릭하여 작업을 수동으로 트리거합니다.
  3. 몇 초 동안 기다립니다.
  4. Cloud Run > 서비스로 이동합니다.
  5. 함수 이름 (teamviewer-logs-collector)을 클릭합니다.
  6. 로그 탭을 클릭합니다.
  7. 함수가 성공적으로 실행되었는지 확인합니다. 다음을 확인하세요.

    Fetching TeamViewer audit data from YYYY-MM-DDTHH:MM:SSZ to YYYY-MM-DDTHH:MM:SSZ
    Retrieved X audit records (total: X)
    Successfully wrote X audit records to teamviewer/audit/YYYY/MM/DD/teamviewer_audit_...json
    
  8. Cloud Storage> 버킷으로 이동합니다.

  9. 버킷 이름 (teamviewer-logs)을 클릭합니다.

  10. 접두사 폴더 (teamviewer/audit/)로 이동합니다.

  11. 현재 타임스탬프를 사용하여 새 .json 파일이 생성되었는지 확인합니다.

로그에 오류가 표시되면 다음 단계를 따르세요.

  • HTTP 401: SCRIPT_TOKEN 환경 변수가 TeamViewer 스크립트 토큰과 일치하는지 확인합니다.
  • HTTP 403: 스크립트 토큰에 연결 보고 > 연결 보고서 보기 권한이 있는지 확인합니다.
  • HTTP 429: 비율 제한 - 함수가 지수 백오프로 자동 재시도됩니다.
  • 환경 변수 누락: 필수 변수 (GCS_BUCKET, API_BASE_URL, SCRIPT_TOKEN)가 모두 설정되어 있는지 확인합니다.

Google SecOps 서비스 계정 가져오기

Google SecOps는 고유한 서비스 계정을 사용하여 GCS 버킷에서 데이터를 읽습니다. 이 서비스 계정에 버킷에 대한 액세스 권한을 부여해야 합니다.

서비스 계정 이메일 가져오기

  1. SIEM 설정> 피드로 이동합니다.
  2. 새 피드 추가를 클릭합니다.
  3. 단일 피드 구성을 클릭합니다.
  4. 피드 이름 필드에 피드 이름을 입력합니다(예: TeamViewer logs).
  5. 소스 유형으로 Google Cloud Storage V2를 선택합니다.
  6. 로그 유형으로 TeamViewer를 선택합니다.
  7. 서비스 계정 가져오기를 클릭합니다. 고유한 서비스 계정 이메일이 표시됩니다. 예를 들면 다음과 같습니다.

    chronicle-12345678@chronicle-gcp-prod.iam.gserviceaccount.com
    
  8. 다음 단계에서 사용할 수 있도록 이 이메일 주소를 복사합니다.

Google SecOps 서비스 계정에 IAM 권한 부여

Google SecOps 서비스 계정에는 GCS 버킷에 대한 스토리지 객체 뷰어 역할이 필요합니다.

  1. Cloud Storage> 버킷으로 이동합니다.
  2. 버킷 이름 (teamviewer-logs)을 클릭합니다.
  3. 권한 탭으로 이동합니다.
  4. 액세스 권한 부여를 클릭합니다.
  5. 다음 구성 세부정보를 제공합니다.
    • 주 구성원 추가: Google SecOps 서비스 계정 이메일을 붙여넣습니다.
    • 역할 할당: 스토리지 객체 뷰어를 선택합니다.
  6. 저장을 클릭합니다.

TeamViewer 로그를 수집하도록 Google SecOps에서 피드 구성

  1. SIEM 설정> 피드로 이동합니다.
  2. 새 피드 추가를 클릭합니다.
  3. 단일 피드 구성을 클릭합니다.
  4. 피드 이름 필드에 피드 이름을 입력합니다(예: TeamViewer logs).
  5. 소스 유형으로 Google Cloud Storage V2를 선택합니다.
  6. 로그 유형으로 TeamViewer를 선택합니다.
  7. 다음을 클릭합니다.
  8. 다음 입력 매개변수의 값을 지정합니다.

    • 스토리지 버킷 URL: 다음 접두사 경로를 사용하여 GCS 버킷 URI를 입력합니다.

      gs://teamviewer-logs/teamviewer/audit/
      
      • 다음과 같이 바꿉니다.

        • teamviewer-logs: GCS 버킷 이름입니다.
        • teamviewer/audit/: 로그가 저장되는 접두사/폴더 경로입니다.
    • 소스 삭제 옵션: 환경설정에 따라 삭제 옵션을 선택합니다.

      • 삭제 안함: 전송 후 파일을 삭제하지 않습니다 (테스트에 권장).
      • 전송된 파일 삭제: 전송이 완료되면 파일을 삭제합니다.
      • 전송된 파일 및 빈 디렉터리 삭제: 전송이 완료되면 파일과 빈 디렉터리를 삭제합니다.

    • 최대 파일 기간: 지난 일수 동안 수정된 파일을 포함합니다. 기본값은 180일입니다.

    • 애셋 네임스페이스: 애셋 네임스페이스입니다.

    • 수집 라벨: 이 피드의 이벤트에 적용할 라벨입니다.

  9. 다음을 클릭합니다.

  10. 확정 화면에서 새 피드 구성을 검토한 다음 제출을 클릭합니다.

UDM 매핑 테이블

로그 필드 UDM 매핑 로직
AffectedItem metadata.product_log_id 원시 로그의 AffectedItem 값이 이 UDM 필드에 직접 매핑됩니다.
EventDetails.NewValue principal.resource.attribute.labels.value PropertyName에 (server)가 포함된 경우 NewValue가 principal.resource.attribute.labels의 라벨 값으로 사용됩니다.
EventDetails.NewValue principal.user.user_display_name PropertyName이 참여자 이름인 경우 NewValue가 주체의 사용자 표시 이름으로 사용됩니다.
EventDetails.NewValue principal.user.userid PropertyName이 참여자의 ID인 경우 NewValue가 주체의 사용자 ID로 사용됩니다.
EventDetails.NewValue security_result.about.labels.value 다른 모든 PropertyName 값 (특정 조건에 의해 처리되는 값 제외)의 경우 NewValue가 security_result.about.labels 배열 내 라벨의 값으로 사용됩니다.
EventDetails.NewValue target.file.full_path PropertyName이 소스 파일인 경우 NewValue가 타겟 파일의 전체 경로로 사용됩니다.
EventDetails.NewValue target.resource.attribute.labels.value PropertyName에 (client)가 포함된 경우 NewValue는 target.resource.attribute.labels의 라벨 값으로 사용됩니다.
EventDetails.NewValue target.user.user_display_name PropertyName이 발표자 이름인 경우 NewValue가 파싱됩니다. 정수인 경우 삭제됩니다. 그렇지 않으면 타겟의 사용자 표시 이름으로 사용됩니다.
EventDetails.NewValue target.user.userid PropertyName이 발표자의 ID인 경우 NewValue가 타겟의 사용자 ID로 사용됩니다.
EventDetails.PropertyName principal.resource.attribute.labels.key PropertyName에 (server)가 포함된 경우 PropertyName은 principal.resource.attribute.labels의 라벨 키로 사용됩니다.
EventDetails.PropertyName security_result.about.labels.key 다른 모든 PropertyName 값 (특정 조건으로 처리되는 값 제외)의 경우 PropertyName은 security_result.about.labels 배열 내 라벨의 키로 사용됩니다.
EventDetails.PropertyName target.resource.attribute.labels.key PropertyName에 (client)가 포함된 경우 PropertyName은 target.resource.attribute.labels의 라벨 키로 사용됩니다.
이벤트 이름 metadata.product_event_type 원시 로그의 EventName 값이 이 UDM 필드에 직접 매핑됩니다.
타임스탬프 metadata.event_timestamp 원시 로그의 타임스탬프 값이 파싱되어 메타데이터의 이벤트 타임스탬프로 사용됩니다.
metadata.event_type src_user (참여자의 ID에서 파생됨)가 비어 있지 않으면 USER_UNCATEGORIZED로 설정하고, 그렇지 않으면 USER_RESOURCE_ACCESS로 설정합니다.
metadata.vendor_name TEAMVIEWER로 하드코딩됩니다.
metadata.product_name TEAMVIEWER로 하드코딩됩니다.
network.application_protocol TEAMVIEWER로 하드코딩됩니다.

도움이 더 필요한가요? 커뮤니티 회원 및 Google SecOps 전문가에게 문의하여 답변을 받으세요.