- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
Prompt()Represents a prompt.
Properties
dataset
API documentation for dataset property.
dataset_version
API documentation for dataset_version property.
prompt_id
Returns the ID associated with the prompt resource.
version_id
Returns the ID associated with the prompt version resource.
Methods
Prompt
Prompt()Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be
validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
assemble_contents
assemble_contents() -> list[google.genai.types.Content]Transforms a Prompt object into a list with a single genai_types.Content object.
This method replaces the variables in the prompt template with the values provided in prompt.prompt_data.variables. If no variables are provided, prompt.prompt_data.contents is returned as is. Only single-turn prompts are supported.
This can be used to call generate_content() in the Gen AI SDK.
Example usage:
my_prompt = types.Prompt( prompt_data=types.PromptData( model="gemini-2.0-flash-001", contents=[ genai_types.Content( parts=[ genai_types.Part(text="Hello {name}!"), ], ), ], variables=[ { "name": genai_types.Part(text="Alice"), }, ], ), )
from google import genai
genai_client = genai.Client(vertexai=True, project="my-project", location="us-central1") genai_client.models.generate_content( model=my_prompt.prompt_data.model, contents=my_prompt.assemble_contents(), )
model_post_init
model_post_init(context: Any, /) -> NoneThis function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.