- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
Metric(
*,
name: typing.Optional[str] = None,
customFunction: typing.Optional[typing.Callable[[...], typing.Any]] = None,
promptTemplate: typing.Optional[str] = None,
judgeModel: typing.Optional[str] = None,
judgeModelGenerationConfig: typing.Optional[
google.genai.types.GenerationConfig
] = None,
judgeModelSamplingCount: typing.Optional[int] = None,
judgeModelSystemInstruction: typing.Optional[str] = None,
returnRawOutput: typing.Optional[bool] = None,
parseAndReduceFn: typing.Optional[typing.Callable[[...], typing.Any]] = None,
aggregateSummaryFn: typing.Optional[typing.Callable[[...], typing.Any]] = None,
rubricGroupName: typing.Optional[str] = None,
metricSpecParameters: typing.Optional[dict[str, typing.Any]] = None,
**extra_data: typing.Any
)The metric used for evaluation.
Methods
Metric
Metric(
*,
name: typing.Optional[str] = None,
customFunction: typing.Optional[typing.Callable[[...], typing.Any]] = None,
promptTemplate: typing.Optional[str] = None,
judgeModel: typing.Optional[str] = None,
judgeModelGenerationConfig: typing.Optional[
google.genai.types.GenerationConfig
] = None,
judgeModelSamplingCount: typing.Optional[int] = None,
judgeModelSystemInstruction: typing.Optional[str] = None,
returnRawOutput: typing.Optional[bool] = None,
parseAndReduceFn: typing.Optional[typing.Callable[[...], typing.Any]] = None,
aggregateSummaryFn: typing.Optional[typing.Callable[[...], typing.Any]] = None,
rubricGroupName: typing.Optional[str] = None,
metricSpecParameters: typing.Optional[dict[str, typing.Any]] = None,
**extra_data: typing.Any
)Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be
validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
model_post_init
model_post_init(context: Any, /) -> NoneThis function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
to_yaml_file
to_yaml_file(file_path: str, version: typing.Optional[str] = None) -> NoneDumps the metric object to a YAML file.
| Exceptions | |
|---|---|
| Type | Description |
ImportError |
If the pyyaml library is not installed. |
validate_name
validate_name(
model: vertexai._genai.types.common.Metric,
) -> vertexai._genai.types.common.MetricAPI documentation for validate_name method.