Genera testo utilizzando un modello Gemini e la funzione AI.GENERATE_TEXT
Questo tutorial mostra come creare un
modello remoto
basato sul
modello gemini-2.5-flash
e come utilizzare questo modello con la
funzione AI.GENERATE_TEXT
per estrarre parole chiave ed eseguire l'analisi del sentiment sulle recensioni di film dalla
tabella pubblica bigquery-public-data.imdb.reviews.
Ruoli obbligatori
Per eseguire questo tutorial, devi disporre dei seguenti ruoli IAM (Identity and Access Management):
- Crea e utilizza set di dati, connessioni e modelli BigQuery:
Amministratore BigQuery (
roles/bigquery.admin). - Concedi le autorizzazioni al account di servizio della connessione: Project IAM Admin
(
roles/resourcemanager.projectIamAdmin).
Questi ruoli predefiniti contengono le autorizzazioni necessarie per eseguire le attività descritte in questo documento. Per vedere quali sono esattamente le autorizzazioni richieste, espandi la sezione Autorizzazioni obbligatorie:
Autorizzazioni obbligatorie
- Crea un set di dati:
bigquery.datasets.create - Crea, delega e utilizza una connessione:
bigquery.connections.* - Imposta la connessione predefinita:
bigquery.config.* - Imposta le autorizzazioni del account di servizio:
resourcemanager.projects.getIamPolicyeresourcemanager.projects.setIamPolicy - Crea un modello ed esegui l'inferenza:
bigquery.jobs.createbigquery.models.createbigquery.models.getDatabigquery.models.updateDatabigquery.models.updateMetadata
Potresti anche ottenere queste autorizzazioni con ruoli personalizzati o altri ruoli predefiniti.
Costi
In questo documento vengono utilizzati i seguenti componenti fatturabili di Google Cloud:
- BigQuery ML: You incur costs for the data that you process in BigQuery.
- Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.
Per generare una stima dei costi in base all'utilizzo previsto,
utilizza il Calcolatore prezzi.
Per ulteriori informazioni sui prezzi di BigQuery, consulta la sezione Prezzi di BigQuery nella documentazione di BigQuery.
Per saperne di più sui prezzi di Vertex AI, consulta la pagina Prezzi di Vertex AI.
Prima di iniziare
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator role
(
roles/resourcemanager.projectCreator), which contains theresourcemanager.projects.createpermission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin), which contains theserviceusage.services.enablepermission. Learn how to grant roles.
Crea un set di dati
Crea un set di dati BigQuery per archiviare il tuo modello ML.
Console
Nella console Google Cloud , vai alla pagina BigQuery.
Nel riquadro Explorer, fai clic sul nome del progetto.
Fai clic su Visualizza azioni > Crea set di dati.
Nella pagina Crea set di dati:
In ID set di dati, inserisci
bqml_tutorial.Per Tipo di località, seleziona Multi-regione e poi Stati Uniti (più regioni negli Stati Uniti).
Lascia invariate le restanti impostazioni predefinite e fai clic su Crea set di dati.
bq
Per creare un nuovo set di dati, utilizza il
comando bq mk
con il flag --location. Per un elenco completo dei possibili parametri, consulta la documentazione di riferimento del
comando bq mk --dataset.
Crea un set di dati denominato
bqml_tutorialcon la località dei dati impostata suUSe una descrizione diBigQuery ML tutorial dataset:bq --location=US mk -d \ --description "BigQuery ML tutorial dataset." \ bqml_tutorial
Anziché utilizzare il flag
--dataset, il comando utilizza la scorciatoia-d. Se ometti-de--dataset, il comando crea per impostazione predefinita un dataset.Verifica che il set di dati sia stato creato:
bq ls
API
Chiama il metodo datasets.insert con una risorsa dataset definita.
{ "datasetReference": { "datasetId": "bqml_tutorial" } }
BigQuery DataFrames
Prima di provare questo esempio, segui le istruzioni di configurazione di BigQuery DataFrames nella guida rapida di BigQuery per l'utilizzo di BigQuery DataFrames. Per ulteriori informazioni, consulta la documentazione di riferimento di BigQuery DataFrames.
Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura ADC per un ambiente di sviluppo locale.
Crea una connessione
Crea una connessione risorsa Cloud e ottieni il account di servizio della connessione. Crea la connessione nella stessa posizione del set di dati creato nel passaggio precedente.
Puoi saltare questo passaggio se hai configurato una connessione predefinita o se disponi del ruolo Amministratore BigQuery.
Seleziona una delle seguenti opzioni:
Console
Vai alla pagina BigQuery.
Nel riquadro a sinistra, fai clic su Explorer:

Se non vedi il riquadro a sinistra, fai clic su Espandi riquadro a sinistra per aprirlo.
Nel riquadro Explorer, espandi il nome del progetto e fai clic su Connessioni.
Nella pagina Connessioni, fai clic su Crea connessione.
Per Tipo di connessione, scegli Modelli remoti di Vertex AI, funzioni remote, BigLake e Spanner (risorsa Cloud).
Nel campo ID connessione, inserisci un nome per la connessione.
Per Tipo di località, seleziona una località per la connessione. La connessione deve essere colocalizzata con le altre risorse, ad esempio i set di dati.
Fai clic su Crea connessione.
Fai clic su Vai alla connessione.
Nel riquadro Informazioni sulla connessione, copia l'ID dell'account di servizio da utilizzare in un passaggio successivo.
bq
In un ambiente a riga di comando, crea una connessione:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Il parametro
--project_idsostituisce il progetto predefinito.Sostituisci quanto segue:
REGION: la tua regione di connessionePROJECT_ID: il tuo Google Cloud ID progettoCONNECTION_ID: un ID per la tua connessione
Quando crei una risorsa di connessione, BigQuery crea un account di serviziot di sistema univoco e lo associa alla connessione.
Risoluzione dei problemi: se viene visualizzato il seguente errore di connessione, aggiorna Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Recupera e copia l'ID account di servizio da utilizzare in un passaggio successivo:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
L'output è simile al seguente:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Utilizza la risorsa
google_bigquery_connection.
Per eseguire l'autenticazione in BigQuery, configura le Credenziali predefinite dell'applicazione. Per saperne di più, vedi Configurare l'autenticazione per le librerie client.
L'esempio seguente crea una connessione di risorsa Cloud denominata
my_cloud_resource_connection nella regione US:
Per applicare la configurazione di Terraform in un progetto Google Cloud , completa i passaggi descritti nelle sezioni seguenti.
Prepara Cloud Shell
- Avvia Cloud Shell.
-
Imposta il progetto Google Cloud predefinito in cui vuoi applicare le configurazioni Terraform.
Devi eseguire questo comando una sola volta per progetto e puoi eseguirlo in qualsiasi directory.
export GOOGLE_CLOUD_PROJECT=PROJECT_ID
Le variabili di ambiente vengono sostituite se imposti valori espliciti nel file di configurazione Terraform.
Preparare la directory
Ogni file di configurazione Terraform deve avere la propria directory (chiamata anche modulo radice).
-
In Cloud Shell, crea una directory e un nuovo file al suo interno. Il nome file deve avere l'estensione
.tf, ad esempiomain.tf. In questo tutorial, il file viene denominatomain.tf.mkdir DIRECTORY && cd DIRECTORY && touch main.tf
-
Se stai seguendo un tutorial, puoi copiare il codice campione in ogni sezione o passaggio.
Copia il codice campione nel file
main.tfappena creato.(Facoltativo) Copia il codice da GitHub. Questa operazione è consigliata quando lo snippet Terraform fa parte di una soluzione end-to-end.
- Rivedi e modifica i parametri di esempio da applicare al tuo ambiente.
- Salva le modifiche.
-
Inizializza Terraform. Devi effettuare questa operazione una sola volta per directory.
terraform init
(Facoltativo) Per utilizzare l'ultima versione del provider Google, includi l'opzione
-upgrade:terraform init -upgrade
Applica le modifiche
-
Rivedi la configurazione e verifica che le risorse che Terraform creerà o
aggiornerà corrispondano alle tue aspettative:
terraform plan
Apporta le correzioni necessarie alla configurazione.
-
Applica la configurazione Terraform eseguendo questo comando e inserendo
yesal prompt:terraform apply
Attendi che Terraform visualizzi il messaggio "Apply complete!".
- Apri il tuo Google Cloud progetto per visualizzare i risultati. Nella console Google Cloud , vai alle risorse nell'interfaccia utente per assicurarti che Terraform le abbia create o aggiornate.
Concedi le autorizzazioni al account di servizio della connessione
Concedi al account di servizio della connessione il ruolo Utente Vertex AI. Devi concedere questo ruolo nello stesso progetto che hai creato o selezionato nella sezione Prima di iniziare. La concessione del ruolo in un progetto diverso genera l'errore bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource.
Per concedere il ruolo, segui questi passaggi:
Vai alla pagina IAM e amministrazione.
Fai clic su Concedi l'accesso.
Nel campo Nuove entità, inserisci l'ID account di servizio che hai copiato in precedenza.
Nel campo Seleziona un ruolo, scegli Vertex AI e poi seleziona Ruolo utente Vertex AI.
Fai clic su Salva.
Crea il modello remoto
Crea un modello remoto che rappresenti un modello Vertex AI ospitato:
Nella console Google Cloud , vai alla pagina BigQuery.
Nell'editor di query, esegui la seguente istruzione:
CREATE OR REPLACE MODEL `bqml_tutorial.gemini_model` REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID` OPTIONS (ENDPOINT = 'gemini-2.5-flash');
Sostituisci quanto segue:
LOCATION: la posizione della connessioneCONNECTION_ID: l'ID della tua connessione BigQueryQuando visualizzi i dettagli della connessione nella console Google Cloud , questo è il valore nell'ultima sezione dell'ID connessione completo mostrato in ID connessione, ad esempio
projects/myproject/locations/connection_location/connections/myconnection
Il completamento della query richiede diversi secondi, dopodiché il modello
gemini_model viene visualizzato nel set di dati bqml_tutorial. Poiché la query utilizza un'istruzione CREATE MODEL
per creare un modello, non ci sono risultati della query.
Eseguire l'estrazione delle parole chiave
Esegui l'estrazione delle parole chiave dalle recensioni dei film di IMDB utilizzando il modello remoto e la funzione AI.GENERATE_TEXT:
Nella console Google Cloud , vai alla pagina BigQuery.
Nell'editor di query, inserisci la seguente istruzione per eseguire l'estrazione delle parole chiave da cinque recensioni di film:
SELECT title, result, review FROM AI.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_model`, ( SELECT CONCAT( """Extract a list of only 3 key words from this review. List only the key words, nothing else. Review: """, review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 5 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens));
L'output è simile al seguente:
+--------------+------------------+----------------------------------------+ | title | result | review | +--------------+------------------+----------------------------------------+ | The Guardian | * Costner | Once again Mr. Costner has dragged out | | | * Kutcher | a movie for far longer than necessary. | | | * Rescue | Aside from the terrific sea rescue... | | | | | | Trespass | * Generic | This is an example of why the majority | | | * Waste | of action films are the same. Generic | | | * Cinematography | and boring, there's really nothing... | | ... | ... | ... | +--------------+------------------+----------------------------------------+
Eseguire l'analisi del sentiment
Esegui l'analisi del sentiment sulle recensioni dei film di IMDB utilizzando il modello remoto e la funzione AI.GENERATE_TEXT:
Nella console Google Cloud , vai alla pagina BigQuery.
Nell'editor di query, esegui la seguente istruzione per eseguire l'analisi del sentiment sulle recensioni dei film:
SELECT title, result, review FROM AI.GENERATE_TEXT( MODEL `bqml_tutorial.gemini_model`, ( SELECT CONCAT( """Perform sentiment analysis on the following text and return one the following categories: positive, negative: """, review) AS prompt, * FROM `bigquery-public-data.imdb.reviews` LIMIT 5 ), STRUCT( 0.2 AS temperature, 100 AS max_output_tokens));
L'output è simile al seguente:
+----------+----------+------------------------------------------------+ | title | result | review | +----------+----------+------------------------------------------------+ | Quitting | Positive | This movie is amazing because the fact that... | | Trespass | Negative | This is an example of why the majority of ... | | ... | ... | ... | +----------+----------+------------------------------------------------+
Esegui la pulizia
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.