이 문서에서는 에이전트형 AI 워크플로를 사용하여 대화형 학습 퀴즈를 생성하고 관리하는 애플리케이션의 대략적인 아키텍처를 설명합니다. 에이전트는 특정 주제에 관한 사용자의 지식을 평가하고 지속적인 세션 상태와 장기 기억을 사용하여 맞춤형 환경을 만듭니다. 에이전트는 사용자의 답변 기록을 유지하므로 후속 질문의 난이도와 콘텐츠를 동적으로 조정할 수 있습니다.
이 문서의 주요 대상에는 에이전트 기반 AI 애플리케이션을 빌드하고 관리하는 설계자, 개발자, 관리자가 포함됩니다. 이 아키텍처는 다양한 산업에서 대화형 스테이트풀 교육 애플리케이션을 만드는 데 적합합니다. 이 문서에서는 AI 에이전트 시스템에 대한 기본적인 이해가 있다고 가정합니다. 에이전트와 비에이전트 시스템의 차이점에 대한 자세한 내용은 AI 에이전트, AI 어시스턴트, 봇의 차이점은 무엇인가요?를 참고하세요.
이 문서의 배포 섹션에서는 데이터 과학 워크플로를 실행하는 에이전트형 AI 애플리케이션의 배포를 실험하는 데 도움이 되는 코드 샘플 링크를 제공합니다.
아키텍처
다음 다이어그램은 대화형 학습 에이전트의 대략적인 아키텍처를 보여줍니다.
아키텍처는 다음 데이터 흐름을 보여줍니다.
- 사용자가 Cloud Run에서 호스팅되는 퀴즈 애플리케이션 내에서 퀴즈를 시작하거나 답을 제출하는 등의 작업을 실행합니다.
- 애플리케이션이 사용자의 입력을 AI 에이전트에게 전달합니다.
AI 에이전트는 Vertex AI의 Gemini 모델을 사용하여 사용자의 입력을 해석합니다. 사용자의 요청에 따라 에이전트는 적절한 도구를 호출하여 요청된 퀴즈 작업을 실행합니다.
예를 들어 에이전트는 퀴즈 세션을 시작하거나, 답변을 평가하거나, 다음 질문을 생성하는 도구를 선택합니다.
에이전트가 퀴즈 애플리케이션에 응답을 전송합니다.
퀴즈 애플리케이션이 사용자에게 응답을 전달합니다.
퀴즈의 상태를 유지하고 환경을 맞춤설정하기 위해 에이전트는 다음과 같은 백그라운드 작업을 실행합니다.
- 에이전트는 저장된 세션의 기록에 최신 퀴즈 진행 상황과 점수를 추가합니다. 이 기록은 Vertex AI Agent Engine Sessions에 저장됩니다.
- 에이전트는 퀴즈 데이터를 메모리로 변환하고 장기 회상을 위해 메모리 뱅크에 저장합니다. 에이전트는 메모리에 저장된 이전 데이터를 사용하여 향후 세션에서 상황에 맞는 응답을 생성합니다.
사용 제품
이 예시 아키텍처에는 다음과 같은 Google Cloud 제품이 사용됩니다.
- Cloud Run: Google의 확장 가능한 인프라에서 직접 컨테이너를 실행할 수 있게 해주는 서버리스 컴퓨팅 플랫폼입니다.
- 에이전트 개발 키트 (ADK): AI 에이전트를 개발, 테스트, 배포하는 도구 및 라이브러리 세트입니다.
- Vertex AI: ML 모델 및 AI 애플리케이션을 학습 및 배포하고 AI 기반 애플리케이션에서 사용하도록 LLM을 맞춤설정할 수 있게 해주는 ML 플랫폼입니다.
- Vertex AI Agent Engine 세션: 사용자와 에이전트 간의 상호작용 기록을 저장하고 검색하는 영구 스토리지 서비스입니다.
- 메모리 뱅크: 사용자와 에이전트 간의 대화를 기반으로 장기 메모리를 생성, 개선, 관리, 검색하는 영구 스토리지 서비스입니다.
배포
코딩 관련 퀴즈를 제공하는 이 아키텍처의 샘플 구현을 배포하려면 GitHub에서 제공되는 Python 튜터 코드 샘플을 사용하세요.
다음 단계
- (노트북) Cloud Run에서 ADK 에이전트의 세션 및 메모리 뱅크 시작하기
- (블로그) ADK를 사용한 상태 및 메모리에 대해 자세히 알아보세요.
- (Codelab) ADK로 프로덕션 AI 코드 검토 어시스턴트 빌드
- (동영상) 에이전트의 메모리에 관한 Agent Factory 팟캐스트를 시청하세요.
- Cloud Run에서 AI 에이전트 호스팅에 대해 알아봅니다.
- Google Cloud에서 AI 및 ML 워크로드와 관련된 아키텍처 원칙 및 권장사항에 대한 개요는 Well-Architected Framework의 AI 및 ML 관점을 참조하세요.
- 그 밖의 참조 아키텍처, 다이어그램, 튜토리얼, 권장사항을 알아보려면 Cloud 아키텍처 센터를 확인하세요.
참여자
저자: 사만다 헤 | 테크니컬 라이터
기타 참여자:
- Amina Mansour | Cloud Platform 평가팀 책임자
- 저자: 쿠마르 다나고팔 | 크로스 프로덕트 솔루션 개발자
- 메건 오키프 | Developer Advocate
- 레이철 디컨-스미스 | 개발자 애드보킷
- 시르 메이르 라도르 | 개발자 관계 엔지니어링 관리자