En esta página se muestra cómo usar el SDK de Vertex AI para ejecutar tareas de Vertex AI RAG Engine.
También puedes seguir los pasos con este cuaderno Introducción a Vertex AI RAG Engine.
Roles obligatorios
Grant roles to your user account. Run the following command once for each of the following
IAM roles:
roles/aiplatform.user
gcloud projects add-iam-policy-binding PROJECT_ID --member="user:USER_IDENTIFIER" --role=ROLE
Replace the following:
PROJECT_ID: Your project ID.USER_IDENTIFIER: The identifier for your user account. For example,myemail@example.com.ROLE: The IAM role that you grant to your user account.
Prepara tu consola Google Cloud
Para usar Vertex AI RAG Engine, sigue estos pasos:
Ejecuta este comando en la consola de Google Cloud para configurar tu proyecto.
gcloud config set project {project}Ejecuta este comando para autorizar tu inicio de sesión.
gcloud auth application-default login
Ejecutar Vertex AI RAG Engine
Copia y pega este código de ejemplo en la consola Google Cloud para ejecutar Vertex AI RAG Engine.
Python
Para saber cómo instalar o actualizar el SDK de Vertex AI para Python, consulta Instalar el SDK de Vertex AI para Python. Para obtener más información, consulta la documentación de referencia de la API Python.
curl
Crea un corpus de RAG.
export LOCATION=LOCATION export PROJECT_ID=PROJECT_ID export CORPUS_DISPLAY_NAME=CORPUS_DISPLAY_NAME // CreateRagCorpus // Output: CreateRagCorpusOperationMetadata curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/ragCorpora \ -d '{ "display_name" : "'"CORPUS_DISPLAY_NAME"'" }'Para obtener más información, consulta el ejemplo de creación de un corpus de RAG.
Importa un archivo RAG.
// ImportRagFiles // Import a single Cloud Storage file or all files in a Cloud Storage bucket. // Input: LOCATION, PROJECT_ID, RAG_CORPUS_ID, GCS_URIS export RAG_CORPUS_ID=RAG_CORPUS_ID export GCS_URIS=GCS_URIS export CHUNK_SIZE=CHUNK_SIZE export CHUNK_OVERLAP=CHUNK_OVERLAP export EMBEDDING_MODEL_QPM_RATE=EMBEDDING_MODEL_QPM_RATE // Output: ImportRagFilesOperationMetadataNumber // Use ListRagFiles, or import_result_sink to get the correct rag_file_id. curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import \ -d '{ "import_rag_files_config": { "gcs_source": { "uris": "GCS_URIS" }, "rag_file_chunking_config": { "chunk_size": CHUNK_SIZE, "chunk_overlap": CHUNK_OVERLAP }, "max_embedding_requests_per_min": EMBEDDING_MODEL_QPM_RATE } }'Para obtener más información, consulta el ejemplo de importación de archivos RAG.
Ejecuta una consulta de recuperación de RAG.
export RAG_CORPUS_RESOURCE=RAG_CORPUS_RESOURCE export VECTOR_DISTANCE_THRESHOLD=VECTOR_DISTANCE_THRESHOLD export SIMILARITY_TOP_K=SIMILARITY_TOP_K { "vertex_rag_store": { "rag_resources": { "rag_corpus": "RAG_CORPUS_RESOURCE" }, "vector_distance_threshold": VECTOR_DISTANCE_THRESHOLD }, "query": { "text": TEXT "similarity_top_k": SIMILARITY_TOP_K } } curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json; charset=utf-8" \ -d @request.json \ "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts"Para obtener más información, consulta la API RAG Engine.
Generar contenido.
{ "contents": { "role": "USER", "parts": { "text": "INPUT_PROMPT" } }, "tools": { "retrieval": { "disable_attribution": false, "vertex_rag_store": { "rag_resources": { "rag_corpus": "RAG_CORPUS_RESOURCE" }, "similarity_top_k": "SIMILARITY_TOP_K", "vector_distance_threshold": VECTOR_DISTANCE_THRESHOLD } } } } curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json; charset=utf-8" \ -d @request.json \ "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD"Para obtener más información, consulta la API RAG Engine.
Siguientes pasos
- Para obtener más información sobre la API de RAG, consulta la API de Vertex AI RAG Engine.
- Para obtener más información sobre las respuestas de RAG, consulta Resultados de extracción y generación de Vertex AI RAG Engine.
- Para obtener información sobre Vertex AI RAG Engine, consulta la descripción general de Vertex AI RAG Engine.