Utilizzare l'API Count Tokens

Questa pagina mostra come ottenere il conteggio dei token per un prompt utilizzando l'API countTokens.

Modelli supportati

I seguenti modelli multimodali supportano l'ottenimento di una stima del conteggio dei token del prompt:

Per scoprire di più sulle versioni del modello, consulta Versioni e ciclo di vita del modello Gemini.

Ottenere il conteggio dei token per un prompt

Puoi ottenere la stima del conteggio dei token per un prompt utilizzando l'API Vertex AI.

Console

Per ottenere il conteggio dei token per un prompt utilizzando Vertex AI Studio nella consoleGoogle Cloud , segui questi passaggi:

  1. Nella sezione Vertex AI della Google Cloud console, vai alla pagina Vertex AI Studio.

    Vai a Vertex AI Studio

  2. Fai clic su Apri Freeform o Apri Chat.
  3. Il numero di token viene calcolato e visualizzato durante la digitazione nel riquadro Prompt. Include il numero di token in tutti i file di input.
  4. Per visualizzare ulteriori dettagli, fai clic su <count> token per aprire il tokenizer dei prompt.
    • Per visualizzare i token nel prompt di testo evidenziati con colori diversi che contrassegnano il confine di ogni ID token, fai clic su ID token in testo. I token multimediali non sono supportati.
    • Per visualizzare gli ID token, fai clic su ID token.

      Per chiudere il riquadro dello strumento di tokenizzazione, fai clic su X o al di fuori del riquadro.

Python

Installa

pip install --upgrade google-genai

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents="What's the highest mountain in Africa?",
)
print(response)
# Example output:
# total_tokens=9
# cached_content_token_count=None

Go

Scopri come installare o aggiornare Go.

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// countWithTxt shows how to count tokens with text input.
func countWithTxt(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What's the highest mountain in Africa?"},
		}},
	}

	resp, err := client.Models.CountTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintf(w, "Total: %d\nCached: %d\n", resp.TotalTokens, resp.CachedContentTokenCount)

	// Example response:
	// Total: 9
	// Cached: 0

	return nil
}

Node.js

Installa

npm install @google/genai

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function countTokens(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await client.models.countTokens({
    model: 'gemini-2.5-flash',
    contents: 'What is the highest mountain in Africa?',
  });

  console.log(response);

  return response.totalTokens;
}

Java

Scopri come installare o aggiornare Java.

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.HttpOptions;
import java.util.Optional;

public class CountTokensWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    countTokens(modelId);
  }

  // Counts tokens with text input
  public static Optional<Integer> countTokens(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      CountTokensResponse response =
          client.models.countTokens(modelId, "What's the highest mountain in Africa?", null);

      System.out.print(response);
      // Example response:
      // CountTokensResponse{totalTokens=Optional[9], cachedContentTokenCount=Optional.empty}
      return response.totalTokens();
    }
  }
}

REST

Per ottenere il conteggio dei token per un prompt utilizzando l'API Vertex AI, invia una richiesta POST all'endpoint del modello del publisher.

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION: la regione in cui elaborare la richiesta. Le opzioni disponibili includono:

    Fai clic per espandere un elenco parziale delle regioni disponibili

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: il tuo ID progetto
  • MODEL_ID: L'ID modello del modello multimodale che vuoi utilizzare.
  • ROLE: Il ruolo in una conversazione associata ai contenuti. La specifica di un ruolo è obbligatoria anche nei casi d'uso a singolo turno. I valori accettabili includono:
    • USER: specifica i contenuti inviati da te.
  • TEXT: le istruzioni di testo da includere nel prompt.

Metodo HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens

Corpo JSON della richiesta:

{
  "contents": [{
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  }]
}

Per inviare la richiesta, scegli una di queste opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json, ed esegui questo comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, ed esegui questo comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente.

Esempio di testo con immagine o video:

Python

Installa

pip install --upgrade google-genai

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))

contents = [
    Part.from_uri(
        file_uri="gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
        mime_type="video/mp4",
    ),
    "Provide a description of the video.",
]

response = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents=contents,
)
print(response)
# Example output:
# total_tokens=16252 cached_content_token_count=None

Go

Scopri come installare o aggiornare Go.

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// countWithTxtAndVid shows how to count tokens with text and video inputs.
func countWithTxtAndVid(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Provide a description of the video."},
			{FileData: &genai.FileData{
				FileURI:  "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
				MIMEType: "video/mp4",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.CountTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintf(w, "Total: %d\nCached: %d\n", resp.TotalTokens, resp.CachedContentTokenCount)

	// Example response:
	// Total: 16252
	// Cached: 0

	return nil
}

Node.js

Installa

npm install @google/genai

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function countTokens(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const video = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
      mimeType: 'video/mp4',
    },
  };

  const response = await client.models.countTokens({
    model: 'gemini-2.5-flash',
    contents: [video, 'Provide a description of the video.'],
  });

  console.log(response);

  return response.totalTokens;
}

Java

Scopri come installare o aggiornare Java.

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import java.util.List;
import java.util.Optional;

public class CountTokensWithTextAndVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    countTokens(modelId);
  }

  // Counts tokens with text and video inputs
  public static Optional<Integer> countTokens(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      Content content =
          Content.fromParts(
              Part.fromText("Provide a description of this video"),
              Part.fromUri("gs://cloud-samples-data/generative-ai/video/pixel8.mp4", "video/mp4"));

      CountTokensResponse response = client.models.countTokens(modelId, List.of(content), null);

      System.out.print(response);
      // Example response:
      // CountTokensResponse{totalTokens=Optional[16707], cachedContentTokenCount=Optional.empty}
      return response.totalTokens();
    }
  }
}

REST

Per ottenere il conteggio dei token per un prompt utilizzando l'API Vertex AI, invia una richiesta POST all'endpoint del modello del publisher.

MODEL_ID="gemini-2.5-flash"
PROJECT_ID="my-project"
TEXT="Provide a summary with about two sentences for the following article."
REGION="us-central1"

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:countTokens -d \
$'{
    "contents": [{
      "role": "user",
      "parts": [
        {
          "file_data": {
            "file_uri": "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
            "mime_type": "video/mp4"
          }
        },
        {
          "text": "'"$TEXT"'"
        }]
    }]
 }'

Prezzi e quote

Non sono previsti costi o limiti di quota per l'utilizzo dell'API CountTokens. La quota massima per l'API CountTokens è di 3000 richieste al minuto.

Passaggi successivi