Panoramica dell'AI generativa
Questo documento descrive le funzioni di intelligenza artificiale (AI) generativa supportate da BigQuery. Queste funzioni accettano input in linguaggio naturale e utilizzano modelli Vertex AI preaddestrati e modelli BigQuery integrati.
Panoramica
BigQuery offre una serie di funzioni AI per aiutarti in attività come le seguenti:
- Generare contenuti creativi.
- Analizza, rileva il sentiment e rispondi a domande su testo o dati non strutturati, come le immagini.
- Riassumi le idee o le impressioni chiave trasmesse dai contenuti.
- Estrai dati strutturati dal testo.
- Classifica il testo o i dati non strutturati in categorie definite dall'utente.
- Genera incorporamenti per cercare testo, immagini e video simili.
- Valuta gli input per classificarli in base alla qualità, alla somiglianza o ad altri criteri.
Le seguenti categorie di funzioni di AI per aiutarti a svolgere queste attività:
Funzioni di AI generica: queste funzioni ti offrono il pieno controllo e la massima trasparenza sulla scelta del modello, del prompt e dei parametri da utilizzare.
Esegui l'inferenza LLM, ad esempio per rispondere a domande sui tuoi dati
AI.GENERATEè la funzione di inferenza più flessibile, che ti consente di analizzare qualsiasi dato non strutturato.AI.GENERATE_TEXTè una versione con valori di tabella diAI.GENERATEche supporta anche i modelli partner e i modelli aperti.
Generare output strutturati, ad esempio estrarre nomi, indirizzi o descrizioni di oggetti da testo, documenti o immagini.
AI.GENERATE, quando specifichi uno schema di output.AI.GENERATE_TABLEè una versione con valori di tabella diAI.GENERATEche chiama un modello remoto e ti consente di specificare uno schema di output personalizzato.- Se lo schema di output ha un solo campo, puoi utilizzare una delle funzioni specializzate:
AI.GENERATE_BOOL,AI.GENERATE_DOUBLEoAI.GENERATE_INT.
Genera embedding per la ricerca semantica e il clustering
AI.EMBED: Crea un embedding da dati di testo o immagine.AI.GENERATE_EMBEDDING: una funzione con valori di tabella che aggiunge una colonna di dati di testo, immagine, audio, video o documento incorporati alla tabella.
Funzioni di AI gestite: queste funzioni hanno una sintassi semplificata e sono ottimizzate per costi e qualità. BigQuery sceglie un modello per te.
Filtrare i dati con condizioni in linguaggio naturale
AI.IF
Valutare l'input, ad esempio in base alla qualità o al sentiment
AI.SCORE
Classificare l'input in categorie definite dall'utente
AI.CLASSIFY
Funzioni specifiche per attività: queste funzioni utilizzano le API Cloud AI per aiutarti a svolgere attività come l'elaborazione del linguaggio naturale, la traduzione automatica, l'elaborazione di documenti, la trascrizione audio e la visione artificiale.
Funzioni di AI per finalità generali
Le funzioni di AI generica ti offrono il pieno controllo e la massima trasparenza sulla scelta del modello, del prompt e dei parametri da utilizzare. Il loro output include informazioni dettagliate sulla chiamata al modello, tra cui lo stato e la risposta completa del modello, che potrebbe includere informazioni sulla classificazione di sicurezza o sulle citazioni.
Esegui l'inferenza LLM
La funzione AI.GENERATE�
è una funzione di inferenza flessibile che funziona
inviando richieste a un modello Vertex AI Gemini e
restituendo la risposta del modello. Puoi utilizzare questa funzione per analizzare
dati di testo, immagini, audio, video o PDF. Ad esempio, potresti analizzare le immagini di arredamento per la casa per generare testo per una colonna design_type, in modo che lo SKU dell'arredamento abbia una descrizione associata, ad esempio mid-century modern o farmhouse.
Puoi eseguire attività di IA generativa utilizzando modelli remoti in
BigQuery ML per fare riferimento a modelli di cui è stato eseguito il deployment
o ospitati in Vertex AI con la
funzione con valori di tabella AI.GENERATE_TEXT.
Puoi utilizzare i seguenti tipi di
modelli remoti:
Modelli remoti su uno dei modelli Gemini disponibili a livello generale o in anteprima per analizzare contenuti di testo, immagini, audio, video o PDF da tabelle standard o tabelle di oggetti con un prompt che fornisci come argomento della funzione.
Modelli remoti su Anthropic Claude, Mistral AI o Llama, modelli partner, o modelli open source supportati, per analizzare un prompt che fornisci in una query o da una colonna di una tabella standard.
Utilizza i seguenti argomenti per provare la generazione di testo in BigQuery ML:
- Genera testo utilizzando un modello Gemini e la funzione
AI.GENERATE_TEXT. - Genera testo utilizzando un modello Gemma e la funzione
AI.GENERATE_TEXT. - Analizza le immagini con un modello Gemini.
- Genera testo utilizzando la funzione
AI.GENERATE_TEXTcon i tuoi dati. - Ottimizza un modello utilizzando i tuoi dati.
Per alcuni modelli, puoi scegliere facoltativamente di configurare l'ottimizzazione supervisionata, che ti consente di addestrare il modello sui tuoi dati per renderlo più adatto al tuo caso d'uso. Tutta l'inferenza avviene in Vertex AI. I risultati vengono archiviati in BigQuery.
Generare dati strutturati
La generazione di dati strutturati è molto simile alla generazione di testo, tranne per il fatto che puoi formattare la risposta del modello specificando uno schema SQL. Ad esempio, potresti generare una tabella che contiene il nome, il numero di telefono, l'indirizzo, la richiesta e il preventivo di prezzo di un cliente a partire dalla trascrizione di una chiamata.
Puoi generare dati strutturati in questi modi:
La funzione
AI.GENERATEchiama un endpoint Vertex AI e può generare un valoreSTRUCTcon il tuo schema personalizzato.Per provarlo, scopri come utilizzare l'output strutturato quando chiami la funzione
AI.GENERATE.La funzione
AI.GENERATE_TABLEchiama un modello remoto ed è una funzione con valori di tabella che genera una tabella con lo schema personalizzato.Per provare a creare dati strutturati, consulta Generare dati strutturati utilizzando la funzione
AI.GENERATE_TABLE.Per un singolo campo di output, puoi utilizzare una delle seguenti funzioni di inferenza specializzate:
Genera embedding
Un incorporamento è un vettore numerico ad alta dimensione che rappresenta una determinata entità, come un testo o un file audio. La generazione di incorporamenti ti consente di acquisire la semantica dei tuoi dati in modo da semplificare il ragionamento e il confronto dei dati.
Di seguito sono riportati alcuni casi d'uso comuni per la generazione di incorporamenti:
- Utilizzo della Retrieval-Augmented Generation (RAG) per ampliare le risposte del modello alle query degli utenti facendo riferimento a dati aggiuntivi provenienti da una fonte attendibile. La RAG offre una migliore accuratezza dei fatti e coerenza delle risposte, oltre a fornire l'accesso a dati più recenti rispetto a quelli di addestramento del modello.
- Esecuzione della ricerca multimodale. Ad esempio, l'utilizzo dell'input di testo per cercare immagini.
- Eseguire la ricerca semantica per trovare elementi simili per suggerimenti, sostituzione e deduplicazione dei record.
- Creazione di incorporamenti da utilizzare con un modello K-means per il clustering.
Per saperne di più su come generare gli incorporamenti e utilizzarli per eseguire queste attività, consulta la Introduzione agli incorporamenti e alla ricerca vettoriale.
Funzioni di AI gestite
Le funzioni di AI gestita sono progettate appositamente per automatizzare le attività di routine, come
classificazione, ordinamento o filtraggio. Queste funzioni utilizzano
Gemini e non richiedono personalizzazione. BigQuery
utilizza il prompt engineering e seleziona il modello e i parametri appropriati da utilizzare
per l'attività specifica per ottimizzare la qualità e la coerenza dei risultati.
Ogni funzione restituisce un valore scalare, ad esempio BOOL, FLOAT64 o STRING,
e non include informazioni aggiuntive sullo stato del modello.
Sono disponibili le seguenti funzioni di AI gestita:
AI.IF: Filtra testo o dati multimodali, ad esempio in una clausolaWHEREoJOIN, in base a un prompt. Ad esempio, potresti filtrare le descrizioni dei prodotti in base a quelle che descrivono un articolo che potrebbe essere un buon regalo.AI.SCORE: Valuta gli input in base a un prompt per classificare le righe in base a qualità, somiglianza o altri criteri. Puoi utilizzare questa funzione in una clausolaORDER BYper estrarre i primi K elementi in base al punteggio. Ad esempio, potresti trovare le 10 recensioni degli utenti più positive o negative per un prodotto.AI.CLASSIFY: Classifica il testo in categorie definite dall'utente. Puoi utilizzare questa funzione in una clausolaGROUP BYper raggruppare gli input in base alle categorie che definisci. Ad esempio, potresti classificare i ticket di assistenza in base al fatto che riguardino fatturazione, spedizione, qualità del prodotto o altro.
Per un tutorial che mostra esempi di come utilizzare queste funzioni, consulta Eseguire l'analisi semantica con le funzioni di AI gestite.
Per un tutorial sui notebook che mostra come utilizzare le funzioni AI gestite e generiche, consulta Analisi semantica con le funzioni AI.
Funzioni specifiche per le attività
Oltre alle funzioni più generali descritte nelle sezioni precedenti, puoi sviluppare soluzioni specifiche per le attività in BigQuery ML utilizzando le API Cloud AI. Le attività supportate includono:
- Elaborazione del linguaggio naturale
- Traduzione automatica
- Elaborazione dei documenti
- Trascrizione audio
- Visione artificiale
Per saperne di più, consulta la Panoramica delle soluzioni specifiche per attività.
Località
Le località supportate per i modelli di generazione ed embedding di testo variano in base al tipo e alla versione del modello che utilizzi. Per ulteriori informazioni, consulta Località.
Prezzi
Ti vengono addebitate le risorse di calcolo che utilizzi per eseguire query sui modelli. I modelli remoti effettuano chiamate ai modelli Vertex AI, pertanto le query sui modelli remoti comportano anche addebiti da Vertex AI.
Per ulteriori informazioni, vedi Prezzi di BigQuery ML.
Monitorare i costi
Le funzioni di AI generativa in BigQuery funzionano inviando richieste a Vertex AI, che può comportare costi. Per monitorare i costi di Vertex AI sostenuti da un job eseguito in BigQuery, segui questi passaggi:
- Visualizza i report sulla fatturazione in fatturazione Cloudg.
Utilizza i filtri per perfezionare i risultati.
Per i servizi, seleziona Vertex AI.
Per visualizzare gli addebiti per un job specifico, filtra per etichetta.
Imposta la chiave su
bigquery_job_id_prefixe il valore sull'ID offerta di lavoro della tua offerta di lavoro. Se l'ID job è più lungo di 63 caratteri, utilizza solo i primi 63 caratteri. Se il tuo ID lavoro contiene caratteri maiuscoli, convertili in minuscoli. In alternativa, puoi associare i lavori a un'etichetta personalizzata per trovarli più facilmente in un secondo momento.
Potrebbero essere necessarie fino a 24 ore prima che alcuni addebiti vengano visualizzati in fatturazione Cloud.
Monitoraggio
Per comprendere meglio il comportamento delle funzioni di AI che chiami in BigQuery, puoi attivare la registrazione delle richieste e delle risposte. Per registrare l'intera richiesta e risposta inviate a e ricevute da Vertex AI, segui questi passaggi:
Abilita i log di richiesta-risposta in Vertex AI. I log vengono archiviati in BigQuery. Devi attivare separatamente la registrazione per ogni modello di base e regione diversi. Per registrare le query eseguite nella regione
us, specifica la regioneus-central1nella richiesta. Per registrare le query eseguite nella regioneeu, specifica la regioneeurope-west4nella richiesta.Esegui una query utilizzando una funzione di AI che chiama Vertex AI utilizzando il modello per cui hai attivato la registrazione nel passaggio precedente.
Per visualizzare la richiesta e la risposta complete di Vertex AI, esegui una query nella tabella di logging per le righe in cui il campo
labels.bigquery_job_id_prefixdella colonnafull_requestcorrisponde ai primi 63 caratteri del tuo ID job. Se vuoi, puoi utilizzare un'etichetta di query personalizzata per facilitare la ricerca della query nei log.Ad esempio, puoi utilizzare una query simile alla seguente:
SELECT * FROM `my_project.my_dataset.request_response_logging` WHERE JSON_VALUE(full_request, '$.labels.bigquery_job_id_prefix') = 'bquxjob_123456...';
Passaggi successivi
- Per un'introduzione all'AI e al ML in BigQuery, consulta Introduzione all'AI e al ML in BigQuery.
- Per saperne di più sull'esecuzione dell'inferenza sui modelli di machine learning, consulta la panoramica dell'inferenza del modello.
- Per ulteriori informazioni sulle istruzioni e sulle funzioni SQL supportate per i modelli di AI generativa, consulta Percorsi utente end-to-end per i modelli di AI generativa.