Membuat embedding dengan model transformer dalam format ONNX

Tutorial ini menunjukkan cara mengekspor model transformer ke format Open Neural Network Exchange (ONNX), mengimpor model ONNX ke dalam set data BigQuery, lalu menggunakan model tersebut untuk membuat embedding dari kueri SQL.

Tutorial ini menggunakan model sentence-transformers/all-MiniLM-L6-v2. Model transformer kalimat ini dikenal karena performanya yang cepat dan efektif dalam membuat embedding kalimat. Embedding kalimat memungkinkan tugas seperti penelusuran semantik, pengelompokan, dan kemiripan kalimat dengan menangkap makna teks yang mendasarinya.

ONNX menyediakan format seragam yang dirancang untuk merepresentasikan framework machine learning (ML) apa pun. Dengan dukungan ML BigQuery untuk ONNX, Anda dapat melakukan hal berikut:

  • Melatih model menggunakan framework favorit Anda.
  • Mengonversi model ke format model ONNX.
  • Impor model ONNX ke BigQuery dan buat prediksi menggunakan BigQuery ML.

Mengonversi file model transformer ke ONNX

Jika ingin, Anda dapat mengikuti langkah-langkah di bagian ini untuk mengonversi model dan tokenizer sentence-transformers/all-MiniLM-L6-v2 ke ONNX secara manual. Atau, Anda dapat menggunakan file contoh dari bucket Cloud Storage gs://cloud-samples-data publik yang telah dikonversi.

Jika memilih untuk mengonversi file secara manual, Anda harus memiliki lingkungan command line lokal yang telah menginstal Python. Untuk mengetahui informasi selengkapnya tentang cara menginstal Python, lihat download Python.

Mengekspor model transformer ke ONNX

Gunakan Hugging Face Optimum CLI untuk mengekspor model sentence-transformers/all-MiniLM-L6-v2 ke ONNX. Untuk mengetahui informasi selengkapnya tentang cara mengekspor model dengan Optimum CLI, lihat Mengekspor model ke ONNX dengan optimum.exporters.onnx.

Untuk mengekspor model, buka lingkungan command line dan ikuti langkah-langkah berikut:

  1. Instal Optimum CLI:

    pip install optimum[onnx]
    
  2. Mengekspor model. Argumen --model menentukan ID model Hugging Face. Argumen --opset menentukan versi library ONNXRuntime, dan ditetapkan ke 17 untuk mempertahankan kompatibilitas dengan library ONNXRuntime yang didukung oleh BigQuery.

    optimum-cli export onnx \
      --model sentence-transformers/all-MiniLM-L6-v2 \
      --task sentence-similarity \
      --opset 17 all-MiniLM-L6-v2/
    

File model diekspor ke direktori all-MiniLM-L6-v2 sebagai model.onnx.

Menerapkan kuantisasi ke model transformer

Gunakan Optimum CLI untuk menerapkan kuantisasi ke model transformer yang diekspor guna mengurangi ukuran model dan mempercepat inferensi. Untuk mengetahui informasi selengkapnya, lihat Kuantisasi.

Untuk menerapkan kuantisasi ke model, jalankan perintah berikut di command line:

optimum-cli onnxruntime quantize \
  --onnx_model all-MiniLM-L6-v2/ \
  --avx512_vnni -o all-MiniLM-L6-v2_quantized

File model yang dikuantisasi diekspor ke direktori all-MiniLM-L6-v2_quantized sebagai model_quantized.onnx.

Mengonversi tokenizer ke ONNX

Untuk membuat embedding menggunakan model transformer dalam format ONNX, Anda biasanya menggunakan tokenizer untuk menghasilkan dua input ke model, input_ids dan attention_mask.

Untuk menghasilkan input ini, konversi tokenizer untuk model sentence-transformers/all-MiniLM-L6-v2 ke format ONNX menggunakan library onnxruntime-extensions. Setelah mengonversi tokenizer, Anda dapat melakukan tokenisasi langsung pada input teks mentah untuk membuat prediksi ONNX.

Untuk mengonversi tokenizer, ikuti langkah-langkah berikut di command line:

  1. Instal Optimum CLI:

    pip install optimum[onnx]
    
  2. Dengan menggunakan editor teks pilihan Anda, buat file bernama convert-tokenizer.py. Contoh berikut menggunakan editor teks nano:

    nano convert-tokenizer.py
    
  3. Salin dan tempel skrip Python berikut ke dalam file convert-tokenizer.py:

    from onnxruntime_extensions import gen_processing_models
    
    # Load the Huggingface tokenizer
    tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
    
    # Export the tokenizer to ONNX using gen_processing_models
    onnx_tokenizer_path = "tokenizer.onnx"
    
    # Generate the tokenizer ONNX model, and set the maximum token length.
    # Ensure 'max_length' is set to a value less than the model's maximum sequence length, failing to do so will result in error during inference.
    tokenizer_onnx_model = gen_processing_models(tokenizer, pre_kwargs={'max_length': 256})[0]
    
    # Modify the tokenizer ONNX model signature.
    # This is because certain tokenizers don't support batch inference.
    tokenizer_onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_value = 1
    
    # Save the tokenizer ONNX model
    with open(onnx_tokenizer_path, "wb") as f:
      f.write(tokenizer_onnx_model.SerializeToString())
    
  4. Simpan file convert-tokenizer.py.

  5. Jalankan skrip Python untuk mengonversi tokenizer:

    python convert-tokenizer.py
    

Tokenizer yang dikonversi diekspor ke direktori all-MiniLM-L6-v2_quantized sebagai tokenizer.onnx.

Mengupload file model yang dikonversi ke Cloud Storage

Setelah Anda mengonversi model transformer dan tokenizer, lakukan langkah-langkah berikut:

Membuat set data

Buat set data BigQuery untuk menyimpan model ML Anda.

Konsol

  1. Di konsol Google Cloud , buka halaman BigQuery.

    Buka halaman BigQuery

  2. Di panel Explorer, klik nama project Anda.

  3. Klik View actions > Create dataset.

  4. Di halaman Create dataset, lakukan hal berikut:

    • Untuk Dataset ID, masukkan bqml_tutorial.

    • Untuk Location type, pilih Multi-region, lalu pilih US (multiple regions in United States).

    • Jangan ubah setelan default yang tersisa, lalu klik Create dataset.

bq

Untuk membuat set data baru, gunakan perintah bq mk dengan flag --location. Untuk daftar lengkap kemungkinan parameter, lihat referensi perintah bq mk --dataset.

  1. Buat set data bernama bqml_tutorial dengan lokasi data yang ditetapkan ke US dan deskripsi BigQuery ML tutorial dataset:

    bq --location=US mk -d \
     --description "BigQuery ML tutorial dataset." \
     bqml_tutorial

    Perintah ini menggunakan pintasan -d, bukan flag --dataset. Jika Anda menghapus -d dan --dataset, perintah defaultnya adalah membuat set data.

  2. Pastikan set data telah dibuat:

    bq ls

API

Panggil metode datasets.insert dengan resource set data yang ditentukan.

{
  "datasetReference": {
     "datasetId": "bqml_tutorial"
  }
}

BigQuery DataFrames

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan BigQuery DataFrames di Panduan memulai BigQuery menggunakan BigQuery DataFrames. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi BigQuery DataFrames.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan ADC untuk lingkungan pengembangan lokal.

import google.cloud.bigquery

bqclient = google.cloud.bigquery.Client()
bqclient.create_dataset("bqml_tutorial", exists_ok=True)

Mengimpor model ONNX ke BigQuery

Impor model tokenizer yang dikonversi dan model sentence transformer sebagai model BigQuery ML.

Pilih salah satu opsi berikut:

Konsol

  1. Di konsol Google Cloud , buka BigQuery Studio.

    Buka BigQuery Studio

  2. Di editor kueri, jalankan pernyataan CREATE MODEL berikut untuk membuat model tokenizer.

     CREATE OR REPLACE MODEL `bqml_tutorial.tokenizer`
      OPTIONS (MODEL_TYPE='ONNX',
       MODEL_PATH='TOKENIZER_BUCKET_PATH')

    Ganti TOKENIZER_BUCKET_PATH dengan jalur ke model yang Anda upload ke Cloud Storage. Jika Anda menggunakan model sampel, ganti TOKENIZER_BUCKET_PATH dengan nilai berikut: gs://cloud-samples-data/bigquery/ml/onnx/all-MiniLM-L6-v2/tokenizer.onnx.

    Setelah operasi selesai, Anda akan melihat pesan yang mirip dengan berikut: Successfully created model named tokenizer di panel Query results.

  3. Klik Go to model untuk membuka panel Details.

  4. Tinjau bagian Kolom Fitur untuk melihat input model dan Kolom Label untuk melihat output model.

    Panel **Detail** untuk `tokenizer model

  5. Di editor kueri, jalankan pernyataan CREATE MODEL berikut untuk membuat model all-MiniLM-L6-v2.

     CREATE OR REPLACE MODEL `bqml_tutorial.all-MiniLM-L6-v2`
      OPTIONS (MODEL_TYPE='ONNX',
       MODEL_PATH='TRANSFORMER_BUCKET_PATH')

    Ganti TRANSFORMER_BUCKET_PATH dengan jalur ke model yang Anda upload ke Cloud Storage. Jika Anda menggunakan model sampel, ganti TRANSFORMER_BUCKET_PATH dengan nilai berikut: gs://cloud-samples-data/bigquery/ml/onnx/all-MiniLM-L6-v2/model_quantized.onnx.

    Setelah operasi selesai, Anda akan melihat pesan yang mirip dengan berikut: Successfully created model named all-MiniLM-L6-v2 di panel Query results.

  6. Klik Go to model untuk membuka panel Details.

  7. Tinjau bagian Kolom Fitur untuk melihat input model dan Kolom Label untuk melihat output model.

    Panel **Detail** untuk model `all-MiniLM-L6-v2`

bq

Gunakan perintah query alat command line bq untuk menjalankan pernyataan CREATE MODEL.

  1. Pada command line, jalankan perintah berikut untuk membuat model tokenizer.

    bq query --use_legacy_sql=false \
    "CREATE OR REPLACE MODEL
    `bqml_tutorial.tokenizer`
    OPTIONS
    (MODEL_TYPE='ONNX',
    MODEL_PATH='TOKENIZER_BUCKET_PATH')"

    Ganti TOKENIZER_BUCKET_PATH dengan jalur ke model yang Anda upload ke Cloud Storage. Jika Anda menggunakan model sampel, ganti TOKENIZER_BUCKET_PATH dengan nilai berikut: gs://cloud-samples-data/bigquery/ml/onnx/all-MiniLM-L6-v2/tokenizer.onnx.

    Setelah operasi selesai, Anda akan melihat pesan yang mirip dengan berikut: Successfully created model named tokenizer.

  2. Pada command line, jalankan perintah berikut untuk membuat model all-MiniLM-L6-v2.

    bq query --use_legacy_sql=false \
    "CREATE OR REPLACE MODEL
    `bqml_tutorial.all-MiniLM-L6-v2`
    OPTIONS
    (MODEL_TYPE='ONNX',
      MODEL_PATH='TRANSFORMER_BUCKET_PATH')"

    Ganti TRANSFORMER_BUCKET_PATH dengan jalur ke model yang Anda upload ke Cloud Storage. Jika Anda menggunakan model sampel, ganti TRANSFORMER_BUCKET_PATH dengan nilai berikut: gs://cloud-samples-data/bigquery/ml/onnx/all-MiniLM-L6-v2/model_quantized.onnx.

    Setelah operasi selesai, Anda akan melihat pesan yang mirip dengan berikut: Successfully created model named all-MiniLM-L6-v2.

  3. Setelah mengimpor model, verifikasi bahwa model muncul di set data.

    bq ls -m bqml_tutorial

    Outputnya mirip dengan hal berikut ini:

    tableId            Type
    ------------------------
    tokenizer          MODEL
    all-MiniLM-L6-v2   MODEL

API

Gunakan metode jobs.insert untuk mengimpor model.Isi parameter query dari resource QueryRequest di isi permintaan dengan pernyataan CREATE MODEL.

  1. Gunakan nilai parameter query berikut untuk membuat model tokenizer.

    {
    "query": "CREATE MODEL `PROJECT_ID :bqml_tutorial.tokenizer` OPTIONS(MODEL_TYPE='ONNX' MODEL_PATH='TOKENIZER_BUCKET_PATH')"
    }

    Ganti kode berikut:

    • PROJECT_ID dengan ID project Anda.
    • TOKENIZER_BUCKET_PATH dengan jalur ke model yang Anda upload ke Cloud Storage. Jika Anda menggunakan model sampel, ganti TOKENIZER_BUCKET_PATH dengan nilai berikut: gs://cloud-samples-data/bigquery/ml/onnx/all-MiniLM-L6-v2/tokenizer.onnx.
  2. Gunakan nilai parameter query berikut untuk membuat model all-MiniLM-L6-v2.

    {
    "query": "CREATE MODEL `PROJECT_ID :bqml_tutorial.all-MiniLM-L6-v2` OPTIONS(MODEL_TYPE='ONNX' MODEL_PATH='TRANSFORMER_BUCKET_PATH')"
    }

    Ganti kode berikut:

    • PROJECT_ID dengan ID project Anda.
    • TRANSFORMER_BUCKET_PATH dengan jalur ke model yang Anda upload ke Cloud Storage. Jika Anda menggunakan model sampel, ganti TRANSFORMER_BUCKET_PATH dengan nilai berikut: gs://cloud-samples-data/bigquery/ml/onnx/all-MiniLM-L6-v2/model_quantized.onnx.

BigQuery DataFrames

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan BigQuery DataFrames di Panduan memulai BigQuery menggunakan BigQuery DataFrames. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi BigQuery DataFrames.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan ADC untuk lingkungan pengembangan lokal.

Impor model tokenizer dan sentence transformer menggunakan objek ONNXModel.

import bigframes
from bigframes.ml.imported import ONNXModel

bigframes.options.bigquery.project = PROJECT_ID

bigframes.options.bigquery.location = "US"

tokenizer = ONNXModel(
  model_path= "TOKENIZER_BUCKET_PATH"
)
imported_onnx_model = ONNXModel(
  model_path="TRANSFORMER_BUCKET_PATH"
)

Ganti kode berikut:

  • PROJECT_ID dengan ID project Anda.
  • TOKENIZER_BUCKET_PATH dengan jalur ke model yang Anda upload ke Cloud Storage. Jika Anda menggunakan model sampel, ganti TOKENIZER_BUCKET_PATH dengan nilai berikut: gs://cloud-samples-data/bigquery/ml/onnx/all-MiniLM-L6-v2/tokenizer.onnx.
  • TRANSFORMER_BUCKET_PATH dengan jalur ke model yang Anda upload ke Cloud Storage. Jika Anda menggunakan model sampel, ganti TRANSFORMER_BUCKET_PATH dengan nilai berikut: gs://cloud-samples-data/bigquery/ml/onnx/all-MiniLM-L6-v2/model_quantized.onnx.

Membuat embedding dengan model ONNX yang diimpor

Gunakan tokenizer yang diimpor dan model transformer kalimat untuk membuat embedding berdasarkan data dari set data publik.bigquery-public-data.imdb.reviews

Pilih salah satu opsi berikut:

Konsol

Gunakan fungsi ML.PREDICT untuk membuat embedding dengan model.

Kueri menggunakan panggilan ML.PREDICT bertingkat, untuk memproses teks mentah secara langsung melalui tokenizer dan model embedding, sebagai berikut:

  • Tokenisasi (kueri dalam): panggilan ML.PREDICT dalam menggunakan model bqml_tutorial.tokenizer. Fungsi ini mengambil kolom title dari set data publik bigquery-public-data.imdb.reviews sebagai input text-nya. Model tokenizer mengonversi string teks mentah menjadi input token numerik yang diperlukan model utama, termasuk input input_ids dan attention_mask.
  • Pembuatan embedding (kueri luar): panggilan ML.PREDICT luar menggunakan model bqml_tutorial.all-MiniLM-L6-v2. Kueri mengambil kolom input_ids dan attention_mask dari output kueri dalam sebagai inputnya.

Pernyataan SELECT mengambil kolom sentence_embedding, yang merupakan array nilai FLOAT yang merepresentasikan sematan semantik teks.

  1. Di konsol Google Cloud , buka BigQuery Studio.

    Buka BigQuery Studio

  2. Di editor kueri, jalankan kueri berikut.

    SELECT
    sentence_embedding
    FROM
    ML.PREDICT (MODEL `bqml_tutorial.all-MiniLM-L6-v2`,
      (
      SELECT
        input_ids, attention_mask
      FROM
        ML.PREDICT(MODEL `bqml_tutorial.tokenizer`,
          (
          SELECT
            title AS text
          FROM
            `bigquery-public-data.imdb.reviews` limit 10))))

    Hasilnya mirip dengan berikut ini:

    +-----------------------+
    | sentence_embedding    |
    +-----------------------+
    | -0.02361682802438736  |
    | 0.02025664784014225   |
    | 0.005168713629245758  |
    | -0.026361213997006416 |
    | 0.0655381828546524    |
    | ...                   |
    +-----------------------+
    

bq

Gunakan perintah query alat command line bq untuk menjalankan kueri. Kueri menggunakan fungsi ML.PREDICT untuk membuat embedding dengan model.

Kueri menggunakan panggilan ML.PREDICT bertingkat, untuk memproses teks mentah secara langsung melalui tokenizer dan model embedding, sebagai berikut:

  • Tokenisasi (kueri dalam): panggilan ML.PREDICT dalam menggunakan model bqml_tutorial.tokenizer. Fungsi ini mengambil kolom title dari set data publik bigquery-public-data.imdb.reviews sebagai input text-nya. Model tokenizer mengonversi string teks mentah menjadi input token numerik yang diperlukan model utama, termasuk input input_ids dan attention_mask.
  • Pembuatan embedding (kueri luar): panggilan ML.PREDICT luar menggunakan model bqml_tutorial.all-MiniLM-L6-v2. Kueri mengambil kolom input_ids dan attention_mask dari output kueri dalam sebagai inputnya.

Pernyataan SELECT mengambil kolom sentence_embedding, yang merupakan array nilai FLOAT yang merepresentasikan sematan semantik teks.

Di command line, jalankan perintah berikut untuk menjalankan kueri.

bq query --use_legacy_sql=false \
'SELECT
sentence_embedding
FROM
ML.PREDICT (MODEL `bqml_tutorial.all-MiniLM-L6-v2`,
  (
  SELECT
    input_ids, attention_mask
  FROM
    ML.PREDICT(MODEL `bqml_tutorial.tokenizer`,
      (
      SELECT
        title AS text
      FROM
        `bigquery-public-data.imdb.reviews` limit 10))))'

Hasilnya mirip dengan berikut ini:

+-----------------------+
| sentence_embedding    |
+-----------------------+
| -0.02361682802438736  |
| 0.02025664784014225   |
| 0.005168713629245758  |
| -0.026361213997006416 |
| 0.0655381828546524    |
| ...                   |
+-----------------------+

BigQuery DataFrames

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan BigQuery DataFrames di Panduan memulai BigQuery menggunakan BigQuery DataFrames. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi BigQuery DataFrames.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan ADC untuk lingkungan pengembangan lokal.

Gunakan metode predict untuk membuat embedding menggunakan model ONNX.

import bigframes.pandas as bpd

df = bpd.read_gbq("bigquery-public-data.imdb.reviews", max_results=10)
df_pred = df.rename(columns={"title": "text"})
tokens = tokenizer.predict(df_pred)
predictions = imported_onnx_model.predict(tokens)
predictions.peek(5)

Outputnya mirip dengan hal berikut ini:

Output dari model transformer.