Usar o Gemini para resumir arquivos de vídeo locais

Este exemplo demonstra como usar o Gemini para resumir um arquivo de vídeo local.

Exemplo de código

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class TextGenerationWithLocalVideo {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with local video input
  public static String generateContent(String modelId) throws IOException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      // Read content from the local video.
      byte[] videoData = Files.readAllBytes(Paths.get("resources/describe_video_content.mp4"));

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromBytes(videoData, "video/mp4"),
                  Part.fromText("Write a short and engaging blog post based on this video.")),
              null);

      System.out.print(response.text());
      // Example response:
      // More Than Just a Climb: Finding Your Flow on the Wall
      // There's something captivating about watching a climber in their element. This short clip
      // offers a perfect glimpse into the focused world of indoor climbing, where precision meets
      // power...
      return response.text();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

const {GoogleGenAI} = require('@google/genai');
const fs = require('fs');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateText(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const videoContent = fs.readFileSync('test-data/describe_video_content.mp4');

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [
      {text: 'hello-world'},
      {
        inlineData: {
          data: videoContent.toString('base64'),
          mimeType: 'video/mp4',
        },
      },
      {text: 'Write a short and engaging blog post based on this video.'},
    ],
  });

  console.log(response.text);

  // Example response:
  // Okay, here's a short and engaging blog post based on the climbing video:
  // **Title: Conquering the Wall: A Glimpse into the World of Indoor Climbing**
  // ...

  return response.text;
}

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

# Read local video file content
with open("test_data/describe_video_content.mp4", "rb") as fp:
    # Video source: https://storage.googleapis.com/cloud-samples-data/generative-ai/video/describe_video_content.mp4
    video_content = fp.read()

response = client.models.generate_content(
    model=model_id,
    contents=[
        Part.from_text(text="hello-world"),
        Part.from_bytes(data=video_content, mime_type="video/mp4"),
        "Write a short and engaging blog post based on this video.",
    ],
)

print(response.text)
# Example response:
# Okay, here's a short and engaging blog post based on the climbing video:
# **Title: Conquering the Wall: A Glimpse into the World of Indoor Climbing**
# ...

A seguir

Para pesquisar e filtrar exemplos de código de outros Google Cloud produtos, consulte a Google Cloud pesquisa de exemplos de código.