Generate Videos from Images using Veo

Create videos from images, using Veo , a generative AI model for video generation.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"
	"time"

	"google.golang.org/genai"
)

// generateVideoFromImage shows how to gen video from img.
func generateVideoFromImage(w io.Writer, outputGCSURI string) error {
	//outputGCSURI = "gs://your-bucket/your-prefix"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	image := &genai.Image{
		GCSURI:   "gs://cloud-samples-data/generative-ai/image/flowers.png",
		MIMEType: "image/png",
	}

	config := &genai.GenerateVideosConfig{
		AspectRatio:  "16:9",
		OutputGCSURI: outputGCSURI,
	}

	modelName := "veo-3.0-generate-preview"
	prompt := "Extreme close-up of a cluster of vibrant wildflowers swaying gently in a sun-drenched meadow."
	operation, err := client.Models.GenerateVideos(ctx, modelName, prompt, image, config)
	if err != nil {
		return fmt.Errorf("failed to start video generation: %w", err)
	}

	// Polling until the operation is done
	for !operation.Done {
		time.Sleep(15 * time.Second)
		operation, err = client.Operations.GetVideosOperation(ctx, operation, nil)
		if err != nil {
			return fmt.Errorf("failed to get operation status: %w", err)
		}
	}

	if operation.Response != nil && len(operation.Response.GeneratedVideos) > 0 {
		videoURI := operation.Response.GeneratedVideos[0].Video.URI
		fmt.Fprintln(w, videoURI)
		return nil
	}

	// Example response:
	// gs://your-bucket/your-prefix/videoURI

	return fmt.Errorf("video generation failed or returned no results")
}

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.genai.Client;
import com.google.genai.types.GenerateVideosConfig;
import com.google.genai.types.GenerateVideosOperation;
import com.google.genai.types.GenerateVideosResponse;
import com.google.genai.types.GeneratedVideo;
import com.google.genai.types.GetOperationConfig;
import com.google.genai.types.Image;
import com.google.genai.types.Video;
import java.util.concurrent.TimeUnit;

public class VideoGenWithImg {

  public static void main(String[] args) throws InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "veo-3.0-generate-preview";
    String outputGcsUri = "gs://your-bucket/your-prefix";
    generateContent(modelId, outputGcsUri);
  }

  // Generates a video with an image and a text prompt.
  public static String generateContent(String modelId, String outputGcsUri)
      throws InterruptedException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client = Client.builder().location("global").vertexAI(true).build()) {

      GenerateVideosOperation operation =
          client.models.generateVideos(
              modelId,
              "Extreme close-up of a cluster of vibrant wildflowers"
                  + " swaying gently in a sun-drenched meadow.",
              Image.builder()
                  .gcsUri("gs://cloud-samples-data/generative-ai/image/flowers.png")
                  .mimeType("image/png")
                  .build(),
              GenerateVideosConfig.builder()
                  .aspectRatio("16:9")
                  .outputGcsUri(outputGcsUri)
                  .build());

      while (!operation.done().orElse(false)) {
        TimeUnit.SECONDS.sleep(15);
        operation =
            client.operations.getVideosOperation(operation, GetOperationConfig.builder().build());
      }

      String generatedVideoUri =
          operation
              .response()
              .flatMap(GenerateVideosResponse::generatedVideos)
              .flatMap(videos -> videos.stream().findFirst())
              .flatMap(GeneratedVideo::video)
              .flatMap(Video::uri)
              .orElseThrow(
                  () ->
                      new IllegalStateException(
                          "Could not get the URI from the generated video"));

      System.out.println("Generated video URI: " + generatedVideoUri);
      // Example response:
      // Generated video URI: gs://your-bucket/your-prefix/generated-video-123.mp4
      return generatedVideoUri;
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateVideo(
  outputGcsUri,
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  let operation = await client.models.generateVideos({
    model: 'veo-3.1-fast-generate-001',
    prompt:
      'Extreme close-up of a cluster of vibrant wildflowers swaying gently in a sun-drenched meadow',
    image: {
      gcsUri: 'gs://cloud-samples-data/generative-ai/image/flowers.png',
      mimeType: 'image/png',
    },
    config: {
      aspectRatio: '16:9',
      outputGcsUri: outputGcsUri,
    },
  });

  while (!operation.done) {
    await new Promise(resolve => setTimeout(resolve, 15000));
    operation = await client.operations.get({operation: operation});
    console.log(operation);
  }

  if (operation.response) {
    console.log(operation.response.generatedVideos[0].video.uri);
  }
  return operation;
}

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import time
from google import genai
from google.genai.types import GenerateVideosConfig, Image

client = genai.Client()

# TODO(developer): Update and un-comment below line
# output_gcs_uri = "gs://your-bucket/your-prefix"

operation = client.models.generate_videos(
    model="veo-3.1-generate-001",
    prompt="Extreme close-up of a cluster of vibrant wildflowers swaying gently in a sun-drenched meadow.",
    image=Image(
        gcs_uri="gs://cloud-samples-data/generative-ai/image/flowers.png",
        mime_type="image/png",
    ),
    config=GenerateVideosConfig(
        aspect_ratio="16:9",
        output_gcs_uri=output_gcs_uri,
    ),
)

while not operation.done:
    time.sleep(15)
    operation = client.operations.get(operation)
    print(operation)

if operation.response:
    print(operation.result.generated_videos[0].video.uri)

# Example response:
# gs://your-bucket/your-prefix

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.