Gerar texto com configurações de segurança

Este exemplo demonstra como usar o modelo Gemini com configurações de segurança para gerar texto.

Mais informações

Para conferir a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Go

Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	"google.golang.org/genai"
)

// generateTextWithSafety shows how to apply safety settings to a text generation request.
func generateTextWithSafety(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	systemInstruction := &genai.Content{
		Parts: []*genai.Part{
			{Text: "Be as mean as possible."},
		},
		Role: genai.RoleUser,
	}

	prompt := "Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark."

	safetySettings := []*genai.SafetySetting{
		{Category: genai.HarmCategoryDangerousContent, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategoryHarassment, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategoryHateSpeech, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategorySexuallyExplicit, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
	}

	config := &genai.GenerateContentConfig{
		SystemInstruction: systemInstruction,
		SafetySettings:    safetySettings,
	}
	modelName := "gemini-2.5-flash"
	resp, err := client.Models.GenerateContent(ctx, modelName,
		[]*genai.Content{{Parts: []*genai.Part{{Text: prompt}}, Role: genai.RoleUser}},
		config,
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintln(w, resp.Text())

	if len(resp.Candidates) > 0 {
		fmt.Fprintln(w, "Finish Reason:", resp.Candidates[0].FinishReason)

		for _, rating := range resp.Candidates[0].SafetyRatings {
			fmt.Fprintf(w, "\nCategory: %v\nIs Blocked: %v\nProbability: %v\nProbability Score: %v\nSeverity: %v\nSeverity Score: %v\n",
				rating.Category,
				rating.Blocked,
				rating.Probability,
				rating.ProbabilityScore,
				rating.Severity,
				rating.SeverityScore,
			)
		}
	}

	// Example response:
	// Category: HARM_CATEGORY_HATE_SPEECH
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 8.996795e-06
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.04771039
	//
	// Category: HARM_CATEGORY_DANGEROUS_CONTENT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 2.2431707e-06
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0
	//
	// Category: HARM_CATEGORY_HARASSMENT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 0.00026123362
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.022358216
	//
	// Category: HARM_CATEGORY_SEXUALLY_EXPLICIT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 6.1352006e-07
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.020111412

	return nil
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.genai.Client;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HarmBlockThreshold;
import com.google.genai.types.HarmCategory;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import com.google.genai.types.SafetySetting;
import java.util.List;
import java.util.stream.Collectors;

public class SafetyWithTxt {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Shows how to generate content with safety settings.
  public static GenerateContentResponse generateContent(String modelId) {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      String systemInstruction = "Be as mean as possible.";

      String prompt =
          "Write a list of 5 disrespectful things that I might say"
              + " to the universe after stubbing my toe in the dark.";

      // Set safety settings.
      List<HarmCategory.Known> categoriesToBlock =
          List.of(
              HarmCategory.Known.HARM_CATEGORY_DANGEROUS_CONTENT,
              HarmCategory.Known.HARM_CATEGORY_HARASSMENT,
              HarmCategory.Known.HARM_CATEGORY_HATE_SPEECH,
              HarmCategory.Known.HARM_CATEGORY_SEXUALLY_EXPLICIT);

      List<SafetySetting> safetySettings =
          categoriesToBlock.stream()
              .map(
                  category ->
                      SafetySetting.builder()
                          .category(category)
                          .threshold(HarmBlockThreshold.Known.BLOCK_LOW_AND_ABOVE)
                          .build())
                  .collect(Collectors.toList());

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              prompt,
              GenerateContentConfig.builder()
                  .systemInstruction(Content.fromParts(Part.fromText(systemInstruction)))
                  .safetySettings(safetySettings)
                  .build());

      // Get response candidate.
      Candidate candidate =
          response
              .candidates()
              .flatMap(candidates -> candidates.stream().findFirst())
              .orElseThrow(
                  () -> new IllegalStateException("No response candidate generated by the model."));

      // Finish Reason will be `SAFETY` if it is blocked.
      System.out.println(candidate.finishReason());
      // Example response:
      // Optional[SAFETY]

      // For details on all the fields in the response.
      candidate
          .safetyRatings()
          .ifPresent(
              safetyRatings ->
                  safetyRatings.forEach(
                      safetyRating -> {
                        System.out.println("\nCategory: " + safetyRating.category());
                        System.out.println("Is Blocked: " + safetyRating.blocked());
                        System.out.println("Probability: " + safetyRating.probability());
                        System.out.println("Probability Score: " + safetyRating.probabilityScore());
                        System.out.println("Severity: " + safetyRating.severity());
                        System.out.println("Severity Score: " + safetyRating.severityScore());
                      }));
      // Example response:
      // Category: Optional[HARM_CATEGORY_HATE_SPEECH]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[1.9967922E-5]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.05732864]
      //
      // Category: Optional[HARM_CATEGORY_DANGEROUS_CONTENT]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[2.9124324E-6]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.04544826]
      //
      // Category: Optional[HARM_CATEGORY_HARASSMENT]
      // Is Blocked: Optional[true]
      // Probability: Optional[MEDIUM]
      // Probability Score: Optional[0.4593908]
      // Severity: Optional[HARM_SEVERITY_MEDIUM]
      // Severity Score: Optional[0.22082388]
      //
      // Category: Optional[HARM_CATEGORY_SEXUALLY_EXPLICIT]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[6.453211E-8]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.023201048]
      return response;
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateWithSafetySettings(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const systemInstruction = 'Be as mean as possible.';

  const prompt =
    'Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark.';

  const safetySettings = [
    {
      category: 'HARM_CATEGORY_DANGEROUS_CONTENT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_HARASSMENT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_HATE_SPEECH',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
  ];

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: prompt,
    config: {
      systemInstruction: systemInstruction,
      safetySettings: safetySettings,
    },
  });

  // console.log(response.text);
  // console.log(response.candidates[0].finishMessage);
  //
  // for (const each of response.candidates[0].safetyRatings) {
  //   console.log('\nCategory:', String(each.category));
  //   console.log('Is Blocked:', each.blocked);
  //   console.log('Probability:', each.probability);
  //   console.log('Probability Score:', each.probabilityScore);
  //   console.log('Severity:', each.severity);
  //   console.log('Severity Score:', each.severityScore);
  // }

  // Example response:
  //
  //     Category:  HarmCategory.HARM_CATEGORY_HATE_SPEECH
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  2.547714e-05
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None
  //
  //     Category:  HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  3.6103818e-06
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None
  //
  //     Category:  HarmCategory.HARM_CATEGORY_HARASSMENT
  //     Is Blocked: True
  //     Probability:  HarmProbability.MEDIUM
  //     Probability Score:  0.71599233
  //     Severity: HarmSeverity.HARM_SEVERITY_MEDIUM
  //     Severity Score: 0.30782545
  //
  //     Category:  HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  1.5624657e-05
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None

  return response;
}

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google import genai
from google.genai.types import (
    GenerateContentConfig,
    HarmCategory,
    HarmBlockThreshold,
    HttpOptions,
    SafetySetting,
)

client = genai.Client(http_options=HttpOptions(api_version="v1"))

system_instruction = "Be as mean as possible."

prompt = """
    Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark.
"""

safety_settings = [
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_HARASSMENT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_HATE_SPEECH,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
]

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=prompt,
    config=GenerateContentConfig(
        system_instruction=system_instruction,
        safety_settings=safety_settings,
    ),
)

# Response will be `None` if it is blocked.
print(response.text)
# Example response:
#     None

# Finish Reason will be `SAFETY` if it is blocked.
print(response.candidates[0].finish_reason)
# Example response:
#     FinishReason.SAFETY

# For details on all the fields in the response
for each in response.candidates[0].safety_ratings:
    print('\nCategory: ', str(each.category))
    print('Is Blocked:', True if each.blocked else False)
    print('Probability: ', each.probability)
    print('Probability Score: ', each.probability_score)
    print('Severity:', each.severity)
    print('Severity Score:', each.severity_score)
# Example response:
#
#     Category:  HarmCategory.HARM_CATEGORY_HATE_SPEECH
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  2.547714e-05
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None
#
#     Category:  HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  3.6103818e-06
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None
#
#     Category:  HarmCategory.HARM_CATEGORY_HARASSMENT
#     Is Blocked: True
#     Probability:  HarmProbability.MEDIUM
#     Probability Score:  0.71599233
#     Severity: HarmSeverity.HARM_SEVERITY_MEDIUM
#     Severity Score: 0.30782545
#
#     Category:  HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  1.5624657e-05
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None

A seguir

Para pesquisar e filtrar exemplos de código de outros Google Cloud produtos, consulte a Google Cloud pesquisa de exemplos de código.