Questa pagina mostra come utilizzare l'SDK Vertex AI per eseguire le attività del motore RAG di Vertex AI.
Puoi anche seguire le istruzioni utilizzando questo blocco note Intro to Vertex AI RAG Engine.
Ruoli obbligatori
Grant roles to your user account. Run the following command once for each of the following
IAM roles:
roles/aiplatform.user
gcloud projects add-iam-policy-binding PROJECT_ID --member="user:USER_IDENTIFIER" --role=ROLE
Replace the following:
PROJECT_ID
: Your project ID.USER_IDENTIFIER
: The identifier for your user account. For example,myemail@example.com
.ROLE
: The IAM role that you grant to your user account.
Preparare la console Google Cloud
Per utilizzare Vertex AI RAG Engine:
Esegui questo comando nella Google Cloud console per configurare il progetto.
gcloud config set project {project}
Esegui questo comando per autorizzare l'accesso.
gcloud auth application-default login
Esegui Vertex AI RAG Engine
Copia e incolla questo codice campione nella console Google Cloud per eseguire Vertex AI RAG Engine.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI Python, consulta Installare l'SDK Vertex AI Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
curl
Crea un corpus RAG.
export LOCATION=LOCATION export PROJECT_ID=PROJECT_ID export CORPUS_DISPLAY_NAME=CORPUS_DISPLAY_NAME // CreateRagCorpus // Output: CreateRagCorpusOperationMetadata curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/ragCorpora \ -d '{ "display_name" : "'"CORPUS_DISPLAY_NAME"'" }'
Per saperne di più, vedi Creare un esempio di corpus RAG.
Importa un file RAG.
// ImportRagFiles // Import a single Cloud Storage file or all files in a Cloud Storage bucket. // Input: LOCATION, PROJECT_ID, RAG_CORPUS_ID, GCS_URIS export RAG_CORPUS_ID=RAG_CORPUS_ID export GCS_URIS=GCS_URIS export CHUNK_SIZE=CHUNK_SIZE export CHUNK_OVERLAP=CHUNK_OVERLAP export EMBEDDING_MODEL_QPM_RATE=EMBEDDING_MODEL_QPM_RATE // Output: ImportRagFilesOperationMetadataNumber // Use ListRagFiles, or import_result_sink to get the correct rag_file_id. curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/ragCorpora/RAG_CORPUS_ID/ragFiles:import \ -d '{ "import_rag_files_config": { "gcs_source": { "uris": "GCS_URIS" }, "rag_file_chunking_config": { "chunk_size": CHUNK_SIZE, "chunk_overlap": CHUNK_OVERLAP }, "max_embedding_requests_per_min": EMBEDDING_MODEL_QPM_RATE } }'
Per saperne di più, consulta l'esempio di importazione di file RAG.
Esegui una query di recupero RAG.
export RAG_CORPUS_RESOURCE=RAG_CORPUS_RESOURCE export VECTOR_DISTANCE_THRESHOLD=VECTOR_DISTANCE_THRESHOLD export SIMILARITY_TOP_K=SIMILARITY_TOP_K { "vertex_rag_store": { "rag_resources": { "rag_corpus": "RAG_CORPUS_RESOURCE" }, "vector_distance_threshold": VECTOR_DISTANCE_THRESHOLD }, "query": { "text": TEXT "similarity_top_k": SIMILARITY_TOP_K } } curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json; charset=utf-8" \ -d @request.json \ "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:retrieveContexts"
Per ulteriori informazioni, consulta l'API RAG Engine.
Crea contenuti.
{ "contents": { "role": "USER", "parts": { "text": "INPUT_PROMPT" } }, "tools": { "retrieval": { "disable_attribution": false, "vertex_rag_store": { "rag_resources": { "rag_corpus": "RAG_CORPUS_RESOURCE" }, "similarity_top_k": "SIMILARITY_TOP_K", "vector_distance_threshold": VECTOR_DISTANCE_THRESHOLD } } } } curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json; charset=utf-8" \ -d @request.json \ "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATION_METHOD"
Per ulteriori informazioni, consulta l'API RAG Engine.
Passaggi successivi
- Per saperne di più sull'API RAG, consulta la documentazione dell'API Vertex AI RAG Engine.
- Per saperne di più sulle risposte di RAG, consulta Output di recupero e generazione di Vertex AI RAG Engine.
- Per scoprire di più su Vertex AI RAG Engine, consulta la panoramica di Vertex AI RAG Engine.