Lister et compter les jetons

Cette page explique comment lister les jetons et les ID de jeton d'une requête, et comment obtenir le nombre total de jetons d'une requête à l'aide du SDK Google Gen AI.

Les jetons et l'importance de les lister et de les comptabiliser

Pour traiter chaque requête, les modèles d'IA générative décomposent le texte et les autres données en unités appelées jetons. La manière dont les données sont converties en jetons dépend de la fonction de tokenisation utilisée. Un jeton peut être composé de caractères, de mots ou d'expressions.

Chaque modèle dispose d'un nombre maximal de jetons qu'il peut gérer dans une requête et sa réponse. Connaître le nombre de jetons de votre requête vous permet de savoir si vous avez dépassé cette limite ou non.

Lorsque vous recensez les jetons, la liste des jetons qui composent votre requête vous est renvoyée. Chaque jeton listé est associé à un ID de jeton, ce qui vous aide à résoudre les problèmes et à analyser le comportement du modèle.

Modèles compatibles

Le tableau suivant présente les modèles compatibles avec le recensement et le comptage des jetons :

Obtenir la liste des jetons et des ID de jeton pour une requête

L'exemple de code suivant vous montre comment obtenir la liste des jetons et des ID de jeton pour une requête. La requête ne doit contenir que du texte. Les requêtes multimodales ne sont pas acceptées.

Python

Installer

pip install --upgrade google-genai

Pour en savoir plus, consultez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.compute_tokens(
    model="gemini-2.5-flash",
    contents="What's the longest word in the English language?",
)

print(response)
# Example output:
# tokens_info=[TokensInfo(
#    role='user',
#    token_ids=[1841, 235303, 235256, 573, 32514, 2204, 575, 573, 4645, 5255, 235336],
#    tokens=[b'What', b"'", b's', b' the', b' longest', b' word', b' in', b' the', b' English', b' language', b'?']
#  )]

Go

Découvrez comment installer ou mettre à jour le Go.

Pour en savoir plus, lisez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"encoding/json"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// computeWithTxt shows how to compute tokens with text input.
func computeWithTxt(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What's the longest word in the English language?"},
		},
			Role: "user"},
	}

	resp, err := client.Models.ComputeTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	type tokenInfoDisplay struct {
		IDs    []int64  `json:"token_ids"`
		Tokens []string `json:"tokens"`
	}
	// See the documentation: https://pkg.go.dev/google.golang.org/genai#ComputeTokensResponse
	for _, instance := range resp.TokensInfo {
		display := tokenInfoDisplay{
			IDs:    instance.TokenIDs,
			Tokens: make([]string, len(instance.Tokens)),
		}
		for i, t := range instance.Tokens {
			display.Tokens[i] = string(t)
		}

		data, err := json.MarshalIndent(display, "", "  ")
		if err != nil {
			return fmt.Errorf("failed to marshal token info: %w", err)
		}
		fmt.Fprintln(w, string(data))
	}

	// Example response:
	// {
	// 	"ids": [
	// 		1841,
	// 		235303,
	// 		235256,
	//    ...
	// 	],
	// 	"values": [
	// 		"What",
	// 		"'",
	// 		"s",
	//    ...
	// 	]
	// }

	return nil
}

Node.js

Installer

npm install @google/genai

Pour en savoir plus, consultez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function countTokens(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
    httpOptions: {apiVersion: 'v1'},
  });

  const response = await client.models.computeTokens({
    model: 'gemini-2.5-flash',
    contents: "What's the longest word in the English language?",
  });

  console.log(response);

  return response.tokensInfo;
}

Java

Découvrez comment installer ou mettre à jour le Java.

Pour en savoir plus, lisez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.ComputeTokensResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.TokensInfo;
import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Optional;

public class CountTokensComputeWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    computeTokens(modelId);
  }

  // Computes tokens with text input
  public static Optional<List<TokensInfo>> computeTokens(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      ComputeTokensResponse response = client.models.computeTokens(
              modelId, "What's the longest word in the English language?", null);

      // Print TokensInfo
      response.tokensInfo().ifPresent(tokensInfoList -> {
        for (TokensInfo info : tokensInfoList) {
          info.role().ifPresent(role -> System.out.println("role: " + role));
          info.tokenIds().ifPresent(tokenIds -> System.out.println("tokenIds: " + tokenIds));
          // print tokens input as strings since they are in a form of byte array
          System.out.println("tokens: ");
          info.tokens().ifPresent(tokens ->
              tokens.forEach(token ->
                  System.out.println(new String(token, StandardCharsets.UTF_8))
              )
          );
        }
      });
      // Example response.tokensInfo()
      // role: user
      // tokenIds: [1841, 235303, 235256, 573, 32514, 2204, 575, 573, 4645, 5255, 235336]
      // tokens:
      // What
      // '
      // s
      // the
      return response.tokensInfo();
    }
  }
}

Obtenir le nombre de jetons d'une requête

L'exemple de code suivant montre comment obtenir le nombre de jetons d'une requête. Les requêtes textuelles et multimodales sont acceptées.

Python

Installer

pip install --upgrade google-genai

Pour en savoir plus, consultez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))

prompt = "Why is the sky blue?"

# Send text to Gemini
response = client.models.generate_content(
    model="gemini-2.5-flash", contents=prompt
)

# Prompt and response tokens count
print(response.usage_metadata)

# Example output:
#  cached_content_token_count=None
#  candidates_token_count=311
#  prompt_token_count=6
#  total_token_count=317

Go

Découvrez comment installer ou mettre à jour le Go.

Pour en savoir plus, lisez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"encoding/json"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateTextAndCount shows how to generate text and obtain token count metadata from the model response.
func generateTextAndCount(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Why is the sky blue?"},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	usage, err := json.MarshalIndent(resp.UsageMetadata, "", "  ")
	if err != nil {
		return fmt.Errorf("failed to convert usage metadata to JSON: %w", err)
	}
	fmt.Fprintln(w, string(usage))

	// Example response:
	// {
	// 	 "candidatesTokenCount": 339,
	// 	 "promptTokenCount": 6,
	// 	 "totalTokenCount": 345
	// }

	return nil
}

Node.js

Installer

npm install @google/genai

Pour en savoir plus, consultez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function countTokens(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
    httpOptions: {apiVersion: 'v1'},
  });

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: 'Why is the sky blue?',
  });

  console.log(response.usageMetadata);

  return response.usageMetadata;
}

Java

Découvrez comment installer ou mettre à jour le Java.

Pour en savoir plus, lisez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GenerateContentResponseUsageMetadata;
import com.google.genai.types.HttpOptions;
import java.util.Optional;

public class CountTokensResponseWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    countTokens(modelId);
  }

  // Generates content response usage metadata that contains prompt and response token counts
  public static Optional<GenerateContentResponseUsageMetadata> countTokens(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
              client.models.generateContent(modelId, "Why is the sky blue?", null);

      response.usageMetadata().ifPresent(System.out::println);
      // Example response:
      // GenerateContentResponseUsageMetadata{cacheTokensDetails=Optional.empty,
      // cachedContentTokenCount=Optional.empty, candidatesTokenCount=Optional[569],
      // candidatesTokensDetails=Optional[[ModalityTokenCount{modality=Optional[TEXT],
      // tokenCount=Optional[569]}]], promptTokenCount=Optional[6],
      // promptTokensDetails=Optional[[ModalityTokenCount{modality=Optional[TEXT],
      // tokenCount=Optional[6]}]], thoughtsTokenCount=Optional[1132],
      // toolUsePromptTokenCount=Optional.empty, toolUsePromptTokensDetails=Optional.empty,
      // totalTokenCount=Optional[1707], trafficType=Optional[ON_DEMAND]}
      return response.usageMetadata();
    }
  }
}