Modificare le immagini con Gemini

Gemini 2.5 Flash Image (gemini-2.5-flash-image) supporta l'editing migliorato di immagini e l'editing in più passaggi e contiene filtri di sicurezza aggiornati che offrono un'esperienza utente più flessibile e meno restrittiva.

Per saperne di più sulle funzionalità del modello, consulta Modelli Gemini.

Modificare un'immagine

Console

Per modificare le immagini:

  1. Apri Vertex AI Studio > Crea prompt.
  2. Fai clic su Cambia modello e seleziona uno dei seguenti modelli dal menu:
    • gemini-2.5-flash-image
    • gemini-3-pro-image-preview
  3. Nel riquadro Output, seleziona Immagine e testo dal menu a discesa.
  4. Fai clic su Inserisci contenuti multimediali () e seleziona un'origine dal menu, poi segui le istruzioni della finestra di dialogo.
  5. Scrivi le modifiche che vuoi apportare all'immagine nell'area di testo Scrivi un prompt.
  6. Fai clic sul pulsante Prompt ().

Gemini genera una versione modificata dell'immagine fornita in base alla tua descrizione. Questa procedura richiede alcuni secondi, ma può essere relativamente più lenta a seconda della capacità.

Python

Installa

pip install --upgrade google-genai

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import GenerateContentConfig, Modality
from PIL import Image
from io import BytesIO

client = genai.Client()

# Using an image of Eiffel tower, with fireworks in the background.
image = Image.open("test_resources/example-image-eiffel-tower.png")

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[image, "Edit this image to make it look like a cartoon."],
    config=GenerateContentConfig(response_modalities=[Modality.TEXT, Modality.IMAGE]),
)
for part in response.candidates[0].content.parts:
    if part.text:
        print(part.text)
    elif part.inline_data:
        image = Image.open(BytesIO((part.inline_data.data)))
        image.save("output_folder/bw-example-image.png")

Java

Scopri come installare o aggiornare Java.

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Blob;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;

public class ImageGenMmFlashEditImageWithTextAndImage {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash-image";
    String outputFile = "resources/output/bw-example-image.png";
    generateContent(modelId, outputFile);
  }

  // Edits an image with image and text input
  public static void generateContent(String modelId, String outputFile) throws IOException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client = Client.builder().location("global").vertexAI(true).build()) {

      byte[] localImageBytes =
          Files.readAllBytes(Paths.get("resources/example-image-eiffel-tower.png"));

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromBytes(localImageBytes, "image/png"),
                  Part.fromText("Edit this image to make it look like a cartoon.")),
              GenerateContentConfig.builder().responseModalities("TEXT", "IMAGE").build());

      // Get parts of the response
      List<Part> parts =
          response
              .candidates()
              .flatMap(candidates -> candidates.stream().findFirst())
              .flatMap(Candidate::content)
              .flatMap(Content::parts)
              .orElse(new ArrayList<>());

      // For each part print text if present, otherwise read image data if present and
      // write it to the output file
      for (Part part : parts) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().flatMap(Blob::data).isPresent()) {
          BufferedImage image =
              ImageIO.read(new ByteArrayInputStream(part.inlineData().flatMap(Blob::data).get()));
          ImageIO.write(image, "png", new File(outputFile));
        }
      }

      System.out.println("Content written to: " + outputFile);

      // Example response:
      // No problem! Here's the image in a cartoon style...
      //
      // Content written to: resources/output/bw-example-image.png
    }
  }
}

Go

Scopri come installare o aggiornare Go.

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"
	"os"

	"google.golang.org/genai"
)

// generateImageMMFlashEditWithTextImg demonstrates editing an image with text and image inputs.
func generateImageMMFlashEditWithTextImg(w io.Writer) error {
	// TODO(developer): Update below lines
	outputFile := "bw-example-image.png"
	inputFile := "example-image-eiffel-tower.png"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	image, err := os.ReadFile(inputFile)
	if err != nil {
		return fmt.Errorf("failed to read image: %w", err)
	}

	modelName := "gemini-2.5-flash-image"
	prompt := "Edit this image to make it look like a cartoon."
	contents := []*genai.Content{
		{
			Role: "user",
			Parts: []*genai.Part{
				{Text: prompt},
				{InlineData: &genai.Blob{
					MIMEType: "image/png",
					Data:     image,
				}},
			},
		},
	}
	resp, err := client.Models.GenerateContent(ctx,
		modelName,
		contents,
		&genai.GenerateContentConfig{
			ResponseModalities: []string{
				string(genai.ModalityText),
				string(genai.ModalityImage),
			},
		},
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	if len(resp.Candidates) == 0 || resp.Candidates[0].Content == nil {
		return fmt.Errorf("no content was generated")
	}

	for _, part := range resp.Candidates[0].Content.Parts {
		if part.Text != "" {
			fmt.Fprintln(w, part.Text)
		} else if part.InlineData != nil {
			if len(part.InlineData.Data) > 0 {
				if err := os.WriteFile(outputFile, part.InlineData.Data, 0644); err != nil {
					return fmt.Errorf("failed to save image: %w", err)
				}
				fmt.Fprintln(w, outputFile)
			}
		}
	}

	// Example response:
	// Here's the image of the Eiffel Tower and fireworks, cartoonized for you!
	// Cartoon-style edit:
	//  - Simplified the Eiffel Tower with bolder lines and slightly exaggerated proportions.
	//  - Brightened and saturated the colors of the sky, fireworks, and foliage for a more vibrant, cartoonish look.
	//  ....
	return nil
}

Node.js

Installa

npm install @google/genai

Per saperne di più, consulta la documentazione di riferimento dell'SDK.

Imposta le variabili di ambiente per utilizzare l'SDK Gen AI con Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const fs = require('fs');
const {GoogleGenAI, Modality} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';

const FILE_NAME = 'test-data/example-image-eiffel-tower.png';

async function generateImage(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const imageBytes = fs.readFileSync(FILE_NAME);

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash-image',
    contents: [
      {
        role: 'user',
        parts: [
          {
            inlineData: {
              mimeType: 'image/png',
              data: imageBytes.toString('base64'),
            },
          },
          {
            text: 'Edit this image to make it look like a cartoon',
          },
        ],
      },
    ],
    config: {
      responseModalities: [Modality.TEXT, Modality.IMAGE],
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(`${part.text}`);
    } else if (part.inlineData) {
      const outputDir = 'output-folder';
      if (!fs.existsSync(outputDir)) {
        fs.mkdirSync(outputDir, {recursive: true});
      }
      const imageBytes = Buffer.from(part.inlineData.data, 'base64');
      const filename = `${outputDir}/bw-example-image.png`;
      fs.writeFileSync(filename, imageBytes);
    }
  }

  // Example response:
  // Okay, I will edit this image to give it a cartoonish style, with bolder outlines, simplified details, and more vibrant colors.
  return response;
}

REST

Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${API_ENDPOINT}:generateContent \
  -d '{
    "contents": {
      "role": "USER",
      "parts": [
        {"fileData": {
          "mimeType": "image/jpg",
          "fileUri": "FILE_NAME"
          }
        },
        {"text": "Convert this photo to black and white, in a cartoonish style."},
      ]

    },
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {
        "aspectRatio": "16:9",
      },
    },
    "safetySettings": {
      "method": "PROBABILITY",
      "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
      "threshold": "BLOCK_MEDIUM_AND_ABOVE"
    },
  }' 2>/dev/null >response.json

Gemini 2.5 Flash Image supporta i seguenti formati: 1:1, 3:2, 2:3, 3:4, 4:3, 4:5, 5:4, 9:16, 16:9 e 21:9.

Gemini genera un'immagine in base alla tua descrizione. Questa procedura richiede alcuni secondi, ma può essere relativamente più lenta a seconda della capacità.

Modifica di immagini in più passaggi

Gemini 2.5 Flash Image e Gemini 3 Pro Image supportano una modifica multi-turn migliorata, che ti consente di rispondere al modello con le modifiche dopo aver ricevuto una risposta con un'immagine modificata.

Ti consigliamo di limitare la dimensione totale del file di richiesta a un massimo di 50 MB.

Per provare la modifica delle immagini in più passaggi, consulta i seguenti notebook:

Per visualizzare esempi di codice relativi alla creazione e alla modifica di immagini in più passaggi utilizzando Gemini 3 Pro Image, vedi Esempio di modifica di immagini in più passaggi utilizzando le firme di pensiero.

Passaggi successivi

Per saperne di più sulla generazione di immagini con Gemini, consulta i seguenti link: