Implementa y realiza inferencias de Gemma con Model Garden y extremos compatibles con GPU de Vertex AI

En este instructivo, usarás Model Garden para implementar el modelo abierto Gemma 1B en un extremo de Vertex AI respaldado por GPU. Debes implementar un modelo en un extremo antes de que se pueda usar para entregar predicciones en línea. La implementación de un modelo asocia recursos físicos con el modelo para que pueda entregar predicciones en línea con baja latencia.

Después de implementar el modelo de Gemma 1B, puedes realizar la inferencia del modelo entrenado con PredictionServiceClient para obtener predicciones en línea. Las predicciones en línea son solicitudes síncronas realizadas en un modelo que se implementa en un extremo.

Implementa Gemma con Model Garden

Puedes implementar Gemma 1B con su tarjeta de modelo en la Google Cloud consola o de forma programática.

Para obtener más información sobre cómo configurar el SDK de IA generativa de Google o Google Cloud CLI, consulta la descripción general del SDK de IA generativa de Google o Instala Google Cloud CLI.

Python

Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Para obtener más información, consulta la documentación de referencia de la API de Python.

  1. Enumera los modelos que puedes implementar y registra el ID del modelo que deseas implementar. De manera opcional, puedes enumerar los modelos de Hugging Face compatibles en Model Garden y, hasta, filtrarlos por nombre. El resultado no incluye ningún modelo ajustado.

    
    import vertexai
    from vertexai import model_garden
    
    # TODO(developer): Update and un-comment below lines
    # PROJECT_ID = "your-project-id"
    vertexai.init(project=PROJECT_ID, location="us-central1")
    
    # List deployable models, optionally list Hugging Face models only or filter by model name.
    deployable_models = model_garden.list_deployable_models(list_hf_models=False, model_filter="gemma")
    print(deployable_models)
    # Example response:
    # ['google/gemma2@gemma-2-27b','google/gemma2@gemma-2-27b-it', ...]
    
  2. Consulta las especificaciones de implementación de un modelo con el ID del modelo del paso anterior. Puedes ver el tipo de máquina, el tipo de acelerador y el URI de la imagen de contenedor que Model Garden verificó para un modelo en particular.

    
    import vertexai
    from vertexai import model_garden
    
    # TODO(developer): Update and un-comment below lines
    # PROJECT_ID = "your-project-id"
    # model = "google/gemma3@gemma-3-1b-it"
    vertexai.init(project=PROJECT_ID, location="us-central1")
    
    # For Hugging Face modelsm the format is the Hugging Face model name, as in
    # "meta-llama/Llama-3.3-70B-Instruct".
    # Go to https://console.cloud.google.com/vertex-ai/model-garden to find all deployable
    # model names.
    
    model = model_garden.OpenModel(model)
    deploy_options = model.list_deploy_options()
    print(deploy_options)
    # Example response:
    # [
    #   dedicated_resources {
    #     machine_spec {
    #       machine_type: "g2-standard-12"
    #       accelerator_type: NVIDIA_L4
    #       accelerator_count: 1
    #     }
    #   }
    #   container_spec {
    #     ...
    #   }
    #   ...
    # ]
    
  3. Implementar un modelo en un extremo Model Garden usa la configuración de implementación predeterminada, a menos que especifiques argumentos y valores adicionales.

    
    import vertexai
    from vertexai import model_garden
    
    # TODO(developer): Update and un-comment below lines
    # PROJECT_ID = "your-project-id"
    vertexai.init(project=PROJECT_ID, location="us-central1")
    
    open_model = model_garden.OpenModel("google/gemma3@gemma-3-12b-it")
    endpoint = open_model.deploy(
        machine_type="g2-standard-48",
        accelerator_type="NVIDIA_L4",
        accelerator_count=4,
        accept_eula=True,
    )
    
    # Optional. Run predictions on the deployed endoint.
    # endpoint.predict(instances=[{"prompt": "What is Generative AI?"}])
    

gcloud

Antes de comenzar, especifica un proyecto de cuota para ejecutar los siguientes comandos. Los comandos que ejecutas se contabilizan en las cuotas de ese proyecto. Para obtener más información, consulta Configura el proyecto de cuota.

  1. Ejecuta el comando gcloud ai model-garden models list para enumerar los modelos que puedes implementar. Este comando enumera todos los IDs de modelos y los que puedes implementar por tu cuenta.

    gcloud ai model-garden models list --model-filter=gemma
    

    En el resultado, busca el ID del modelo que se implementará. En el siguiente ejemplo, se muestra un resultado abreviado.

    MODEL_ID                                      CAN_DEPLOY  CAN_PREDICT
    google/gemma2@gemma-2-27b                     Yes         No
    google/gemma2@gemma-2-27b-it                  Yes         No
    google/gemma2@gemma-2-2b                      Yes         No
    google/gemma2@gemma-2-2b-it                   Yes         No
    google/gemma2@gemma-2-9b                      Yes         No
    google/gemma2@gemma-2-9b-it                   Yes         No
    google/gemma3@gemma-3-12b-it                  Yes         No
    google/gemma3@gemma-3-12b-pt                  Yes         No
    google/gemma3@gemma-3-1b-it                   Yes         No
    google/gemma3@gemma-3-1b-pt                   Yes         No
    google/gemma3@gemma-3-27b-it                  Yes         No
    google/gemma3@gemma-3-27b-pt                  Yes         No
    google/gemma3@gemma-3-4b-it                   Yes         No
    google/gemma3@gemma-3-4b-pt                   Yes         No
    google/gemma3n@gemma-3n-e2b                   Yes         No
    google/gemma3n@gemma-3n-e2b-it                Yes         No
    google/gemma3n@gemma-3n-e4b                   Yes         No
    google/gemma3n@gemma-3n-e4b-it                Yes         No
    google/gemma@gemma-1.1-2b-it                  Yes         No
    google/gemma@gemma-1.1-2b-it-gg-hf            Yes         No
    google/gemma@gemma-1.1-7b-it                  Yes         No
    google/gemma@gemma-1.1-7b-it-gg-hf            Yes         No
    google/gemma@gemma-2b                         Yes         No
    google/gemma@gemma-2b-gg-hf                   Yes         No
    google/gemma@gemma-2b-it                      Yes         No
    google/gemma@gemma-2b-it-gg-hf                Yes         No
    google/gemma@gemma-7b                         Yes         No
    google/gemma@gemma-7b-gg-hf                   Yes         No
    google/gemma@gemma-7b-it                      Yes         No
    google/gemma@gemma-7b-it-gg-hf                Yes         No
    

    El resultado no incluye ningún modelo ajustado ni modelos de Hugging Face. Para ver qué modelos de Hugging Face son compatibles, agrega la marca --can-deploy-hugging-face-models.

  2. Para ver las especificaciones de implementación de un modelo, ejecuta el comando gcloud ai model-garden models list-deployment-config. Puedes ver el tipo de máquina, el tipo de acelerador y el URI de la imagen de contenedor que Model Garden admite para un modelo en particular.

    gcloud ai model-garden models list-deployment-config \
        --model=MODEL_ID
    

    Reemplaza MODEL_ID por el ID del modelo del comando de lista anterior, como google/gemma@gemma-2b o stabilityai/stable-diffusion-xl-base-1.0.

  3. Ejecuta el comando gcloud ai model-garden models deploy para implementar un modelo en un extremo. Model Garden genera un nombre visible para tu extremo y usa la configuración de implementación predeterminada, a menos que especifiques argumentos y valores adicionales.

    Para ejecutar el comando de forma asíncrona, incluye la marca --asynchronous.

    gcloud ai model-garden models deploy \
        --model=MODEL_ID \
        [--machine-type=MACHINE_TYPE] \
        [--accelerator-type=ACCELERATOR_TYPE] \
        [--endpoint-display-name=ENDPOINT_NAME] \
        [--hugging-face-access-token=HF_ACCESS_TOKEN] \
        [--reservation-affinity reservation-affinity-type=any-reservation] \
        [--reservation-affinity reservation-affinity-type=specific-reservation, key="compute.googleapis.com/reservation-name", values=RESERVATION_RESOURCE_NAME] \
        [--asynchronous]
    

    Reemplaza los siguientes marcadores de posición:

    • MODEL_ID: Es el ID del modelo del comando de lista anterior. En el caso de los modelos de Hugging Face, usa el formato de URL del modelo de Hugging Face, como stabilityai/stable-diffusion-xl-base-1.0.
    • MACHINE_TYPE: Define el conjunto de recursos que se implementarán para tu modelo, como g2-standard-4.
    • ACCELERATOR_TYPE: Especifica los aceleradores que se agregarán a tu implementación para ayudar a mejorar el rendimiento cuando trabajes con cargas de trabajo intensivas, como NVIDIA_L4.
    • ENDPOINT_NAME: Es un nombre para el extremo de Vertex AI implementado.
    • HF_ACCESS_TOKEN: En el caso de los modelos de Hugging Face, si el modelo está restringido, proporciona un token de acceso.
    • RESERVATION_RESOURCE_NAME: Para usar una reserva de Compute Engine específica, especifica el nombre de tu reserva. Si especificas una reserva específica, no puedes especificar any-reservation.

    El resultado incluye la configuración de la implementación que usó Model Garden, el ID del extremo y el ID de la operación de implementación, que puedes usar para verificar el estado de la implementación.

    Using the default deployment configuration:
     Machine type: g2-standard-12
     Accelerator type: NVIDIA_L4
     Accelerator count: 1
    
    The project has enough quota. The current usage of quota for accelerator type NVIDIA_L4 in region us-central1 is 0 out of 28.
    
    Deploying the model to the endpoint. To check the deployment status, you can try one of the following methods:
    1) Look for endpoint `ENDPOINT_DISPLAY_NAME` at the [Vertex AI] -> [Online prediction] tab in Cloud Console
    2) Use `gcloud ai operations describe OPERATION_ID --region=LOCATION` to find the status of the deployment long-running operation
    
  4. Para ver detalles sobre tu implementación, ejecuta el comando gcloud ai endpoints list --list-model-garden-endpoints-only:

    gcloud ai endpoints list --list-model-garden-endpoints-only \
        --region=LOCATION_ID
    

    Reemplaza LOCATION_ID por la región en la que implementaste el modelo.

    El resultado incluye todos los extremos que se crearon a partir de Model Garden y contiene información como el ID del extremo, el nombre del extremo y si el extremo está asociado con un modelo implementado. Para encontrar tu implementación, busca el nombre del extremo que se devolvió en el comando anterior.

REST

Enumera todos los modelos que se pueden implementar y, luego, obtén el ID del modelo que se implementará. Luego, puedes implementar el modelo con su configuración y extremo predeterminados. También puedes personalizar tu implementación, por ejemplo, establecer un tipo de máquina específico o usar un extremo dedicado.

Enumera los modelos que puedes implementar

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • PROJECT_ID: El ID de tu proyecto de Google Cloud .
  • QUERY_PARAMETERS: Para enumerar los modelos de Model Garden, agrega los siguientes parámetros de consulta: listAllVersions=True&filter=can_deploy(true). Para enumerar los modelos de Hugging Face, establece el filtro en alt=json&is_hf_wildcard(true)+AND+labels.VERIFIED_DEPLOYMENT_CONFIG%3DVERIFIED_DEPLOYMENT_SUCCEED&listAllVersions=True.

Método HTTP y URL:

GET https://us-central1-aiplatform.googleapis.com/v1/publishers/*/models?QUERY_PARAMETERS

Para enviar tu solicitud, elige una de estas opciones:

curl

Ejecuta el siguiente comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
"https://us-central1-aiplatform.googleapis.com/v1/publishers/*/models?QUERY_PARAMETERS"

PowerShell

Ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/publishers/*/models?QUERY_PARAMETERS" | Select-Object -Expand Content

Recibirás una respuesta JSON similar a la siguiente:

{
  "publisherModels": [
    {
      "name": "publishers/google/models/gemma3",
      "versionId": "gemma-3-1b-it",
      "openSourceCategory": "GOOGLE_OWNED_OSS_WITH_GOOGLE_CHECKPOINT",
      "supportedActions": {
        "openNotebook": {
          "references": {
            "us-central1": {
              "uri": "https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_gradio_streaming_chat_completions.ipynb"
            }
          },
          "resourceTitle": "Notebook",
          "resourceUseCase": "Chat Completion Playground",
          "resourceDescription": "Chat with deployed Gemma 2 endpoints via Gradio UI."
        },
        "deploy": {
          "modelDisplayName": "gemma-3-1b-it",
          "containerSpec": {
            "imageUri": "us-docker.pkg.dev/vertex-ai/vertex-vision-model-garden-dockers/pytorch-vllm-serve:20250312_0916_RC01",
            "args": [
              "python",
              "-m",
              "vllm.entrypoints.api_server",
              "--host=0.0.0.0",
              "--port=8080",
              "--model=gs://vertex-model-garden-restricted-us/gemma3/gemma-3-1b-it",
              "--tensor-parallel-size=1",
              "--swap-space=16",
              "--gpu-memory-utilization=0.95",
              "--disable-log-stats"
            ],
            "env": [
              {
                "name": "MODEL_ID",
                "value": "google/gemma-3-1b-it"
              },
              {
                "name": "DEPLOY_SOURCE",
                "value": "UI_NATIVE_MODEL"
              }
            ],
            "ports": [
              {
                "containerPort": 8080
              }
            ],
            "predictRoute": "/generate",
            "healthRoute": "/ping"
          },
          "dedicatedResources": {
            "machineSpec": {
              "machineType": "g2-standard-12",
              "acceleratorType": "NVIDIA_L4",
              "acceleratorCount": 1
            }
          },
          "publicArtifactUri": "gs://vertex-model-garden-restricted-us/gemma3/gemma3.tar.gz",
          "deployTaskName": "vLLM 128K context",
          "deployMetadata": {
            "sampleRequest": "{\n    \"instances\": [\n        {\n          \"@requestFormat\": \"chatCompletions\",\n          \"messages\": [\n              {\n                  \"role\": \"user\",\n                  \"content\": \"What is machine learning?\"\n              }\n          ],\n          \"max_tokens\": 100\n        }\n    ]\n}\n"
          }
        },
        ...

Implementar un modelo

Implementa un modelo de Model Garden o de Hugging Face. También puedes personalizar la implementación especificando campos JSON adicionales.

Implementa un modelo con su configuración predeterminada.

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: Es una región en la que se implementa el modelo.
  • PROJECT_ID: El ID de tu proyecto de Google Cloud .
  • MODEL_ID: ID del modelo que se implementará, que puedes obtener de la lista de todos los modelos implementables. El ID usa el siguiente formato: publishers/PUBLISHER_NAME/models/MODEL_NAME@MODEL_VERSION.

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy

Cuerpo JSON de la solicitud:

{
  "publisher_model_name": "MODEL_ID",
  "model_config": {
    "accept_eula": "true"
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json. Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:

cat > request.json << 'EOF'
{
  "publisher_model_name": "MODEL_ID",
  "model_config": {
    "accept_eula": "true"
  }
}
EOF

Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json. Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:

@'
{
  "publisher_model_name": "MODEL_ID",
  "model_config": {
    "accept_eula": "true"
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy" | Select-Object -Expand Content

Recibirás una respuesta JSON similar a la siguiente:

{
  "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeployOperationMetadata",
    "genericMetadata": {
      "createTime": "2025-03-13T21:44:44.538780Z",
      "updateTime": "2025-03-13T21:44:44.538780Z"
    },
    "publisherModel": "publishers/google/models/gemma3@gemma-3-1b-it",
    "destination": "projects/PROJECT_ID/locations/LOCATION",
    "projectNumber": "PROJECT_ID"
  }
}

Implementa un modelo de Hugging Face

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: Es una región en la que se implementa el modelo.
  • PROJECT_ID: El ID de tu proyecto de Google Cloud .
  • MODEL_ID: Es el ID del modelo de Hugging Face que se implementará, el cual puedes obtener de la lista de todos los modelos implementables. El ID usa el siguiente formato: PUBLISHER_NAME/MODEL_NAME.
  • ACCESS_TOKEN: Si el modelo está restringido, proporciona un token de acceso.

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy

Cuerpo JSON de la solicitud:

{
  "hugging_face_model_id": "MODEL_ID",
  "hugging_face_access_token": "ACCESS_TOKEN",
  "model_config": {
    "accept_eula": "true"
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json. Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:

cat > request.json << 'EOF'
{
  "hugging_face_model_id": "MODEL_ID",
  "hugging_face_access_token": "ACCESS_TOKEN",
  "model_config": {
    "accept_eula": "true"
  }
}
EOF

Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json. Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:

@'
{
  "hugging_face_model_id": "MODEL_ID",
  "hugging_face_access_token": "ACCESS_TOKEN",
  "model_config": {
    "accept_eula": "true"
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy" | Select-Object -Expand Content

Recibirás una respuesta JSON similar a la siguiente:

{
  "name": "projects/PROJECT_ID/locations/us-central1LOCATION/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeployOperationMetadata",
    "genericMetadata": {
      "createTime": "2025-03-13T21:44:44.538780Z",
      "updateTime": "2025-03-13T21:44:44.538780Z"
    },
    "publisherModel": "publishers/PUBLISHER_NAME/model/MODEL_NAME",
    "destination": "projects/PROJECT_ID/locations/LOCATION",
    "projectNumber": "PROJECT_ID"
  }
}

Implementa un modelo con personalizaciones

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: Es una región en la que se implementa el modelo.
  • PROJECT_ID: El ID de tu proyecto de Google Cloud .
  • MODEL_ID: ID del modelo que se implementará, que puedes obtener de la lista de todos los modelos implementables. El ID usa el siguiente formato: publishers/PUBLISHER_NAME/models/MODEL_NAME@MODEL_VERSION, como google/gemma@gemma-2b o stabilityai/stable-diffusion-xl-base-1.0.
  • MACHINE_TYPE: Define el conjunto de recursos que se implementarán para tu modelo, como g2-standard-4.
  • ACCELERATOR_TYPE: Especifica los aceleradores que se agregarán a tu implementación para ayudar a mejorar el rendimiento cuando trabajes con cargas de trabajo intensivas, como NVIDIA_L4
  • ACCELERATOR_COUNT: Es la cantidad de aceleradores que se usarán en tu implementación.
  • reservation_affinity_type: Para usar una reserva de Compute Engine existente para tu implementación, especifica cualquier reserva o una específica. Si especificas este valor, no especifiques spot.
  • spot: Indica si se usarán VMs Spot para la implementación.
  • IMAGE_URI: Es la ubicación de la imagen del contenedor que se usará, como us-docker.pkg.dev/vertex-ai/vertex-vision-model-garden-dockers/pytorch-vllm-serve:20241016_0916_RC00_maas
  • CONTAINER_ARGS: Argumentos para pasar al contenedor durante la implementación.
  • CONTAINER_PORT: Número de puerto para tu contenedor.
  • fast_tryout_enabled: Cuando pruebes un modelo, puedes optar por usar una implementación más rápida. Esta opción solo está disponible para los modelos más usados con ciertos tipos de máquinas. Si está habilitado, no puedes especificar configuraciones de implementación ni de modelos.

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy

Cuerpo JSON de la solicitud:

{
  "publisher_model_name": "MODEL_ID",
  "deploy_config": {
    "dedicated_resources": {
      "machine_spec": {
        "machine_type": "MACHINE_TYPE",
        "accelerator_type": "ACCELERATOR_TYPE",
        "accelerator_count": ACCELERATOR_COUNT,
        "reservation_affinity": {
          "reservation_affinity_type": "ANY_RESERVATION"
        }
      },
      "spot": "false"
    }
  },
  "model_config": {
    "accept_eula": "true",
    "container_spec": {
      "image_uri": "IMAGE_URI",
      "args": [CONTAINER_ARGS ],
      "ports": [
        {
          "container_port": CONTAINER_PORT
        }
      ]
    }
  },
  "deploy_config": {
    "fast_tryout_enabled": false
  },
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json. Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:

cat > request.json << 'EOF'
{
  "publisher_model_name": "MODEL_ID",
  "deploy_config": {
    "dedicated_resources": {
      "machine_spec": {
        "machine_type": "MACHINE_TYPE",
        "accelerator_type": "ACCELERATOR_TYPE",
        "accelerator_count": ACCELERATOR_COUNT,
        "reservation_affinity": {
          "reservation_affinity_type": "ANY_RESERVATION"
        }
      },
      "spot": "false"
    }
  },
  "model_config": {
    "accept_eula": "true",
    "container_spec": {
      "image_uri": "IMAGE_URI",
      "args": [CONTAINER_ARGS ],
      "ports": [
        {
          "container_port": CONTAINER_PORT
        }
      ]
    }
  },
  "deploy_config": {
    "fast_tryout_enabled": false
  },
}
EOF

Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json. Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:

@'
{
  "publisher_model_name": "MODEL_ID",
  "deploy_config": {
    "dedicated_resources": {
      "machine_spec": {
        "machine_type": "MACHINE_TYPE",
        "accelerator_type": "ACCELERATOR_TYPE",
        "accelerator_count": ACCELERATOR_COUNT,
        "reservation_affinity": {
          "reservation_affinity_type": "ANY_RESERVATION"
        }
      },
      "spot": "false"
    }
  },
  "model_config": {
    "accept_eula": "true",
    "container_spec": {
      "image_uri": "IMAGE_URI",
      "args": [CONTAINER_ARGS ],
      "ports": [
        {
          "container_port": CONTAINER_PORT
        }
      ]
    }
  },
  "deploy_config": {
    "fast_tryout_enabled": false
  },
}
'@  | Out-File -FilePath request.json -Encoding utf8

Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION:deploy" | Select-Object -Expand Content

Recibirás una respuesta JSON similar a la siguiente:

{
  "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeployOperationMetadata",
    "genericMetadata": {
      "createTime": "2025-03-13T21:44:44.538780Z",
      "updateTime": "2025-03-13T21:44:44.538780Z"
    },
    "publisherModel": "publishers/google/models/gemma3@gemma-3-1b-it",
    "destination": "projects/PROJECT_ID/locations/LOCATION",
    "projectNumber": "PROJECT_ID"
  }
}

Console

  1. En la consola de Google Cloud , ve a la página Model Garden.

    Ir a Model Garden

  2. Busca un modelo compatible que desees implementar y haz clic en su tarjeta.

  3. Haz clic en Implementar para abrir el panel Implementar modelo.

  4. En el panel Implementar modelo, especifica los detalles de la implementación.

    1. Usar o modificar los nombres del modelo y del extremo generados
    2. Selecciona una ubicación para crear el extremo del modelo.
    3. Selecciona un tipo de máquina para usar en cada nodo de tu implementación.
    4. Para usar una reserva de Compute Engine, en la sección Configuración de implementación, selecciona Avanzada.

      En el campo Tipo de reserva, selecciona un tipo de reserva. La reserva debe coincidir con las especificaciones de la máquina que indicaste.

      • Usar la reserva creada de forma automática: Vertex AI selecciona automáticamente una reserva permitida con propiedades coincidentes. Si no hay capacidad en la reserva seleccionada automáticamente, Vertex AI usa el grupo de recursos Google Cloudgeneral.
      • Seleccionar reservas específicas: Vertex AI usa una reserva específica. Si no hay capacidad para la reserva que seleccionaste, se arroja un error.
      • No usar (opción predeterminada): Vertex AI usa el grupo de recursosGoogle Cloud general. Este valor tiene el mismo efecto que no especificar una reserva.
  5. Haz clic en Implementar.

Terraform

Si deseas obtener más información para aplicar o quitar una configuración de Terraform, consulta los comandos básicos de Terraform. Para obtener más información, consulta la documentación de referencia del proveedor de Terraform.

Implementar un modelo

En el siguiente ejemplo, se implementa el modelo gemma-3-1b-it en un extremo nuevo de Vertex AI en us-central1 con la configuración predeterminada.

terraform {
  required_providers {
    google = {
      source = "hashicorp/google"
      version = "6.45.0"
    }
  }
}

provider "google" {
  region  = "us-central1"
}

resource "google_vertex_ai_endpoint_with_model_garden_deployment" "gemma_deployment" {
  publisher_model_name = "publishers/google/models/gemma3@gemma-3-1b-it"
  location = "us-central1"
  model_config {
    accept_eula = True
  }
}

Para implementar un modelo con personalización, consulta Extremo de Vertex AI con implementación de Model Garden para obtener más detalles.

Aplica la configuración

terraform init
terraform plan
terraform apply

Después de aplicar la configuración, Terraform aprovisiona un nuevo extremo de Vertex AI y, luego, implementa el modelo abierto especificado.

Limpieza

Para borrar el extremo y la implementación del modelo, ejecuta el siguiente comando:

terraform destroy

Inferencia de Gemma 1B con PredictionServiceClient

Después de implementar Gemma 1B, usas PredictionServiceClient para obtener predicciones en línea para la instrucción: "¿Por qué el cielo es azul?".

Parámetros de código

En las muestras de código de PredictionServiceClient, debes actualizar lo siguiente.

  • PROJECT_ID: Para encontrar el ID de tu proyecto, sigue estos pasos.

    1. Ve a la página Bienvenida en la consola de Google Cloud .

      Ir a Bienvenida

    2. En el selector de proyectos que se encuentra en la parte superior de la página, selecciona tu proyecto.

      El nombre, el número y el ID del proyecto aparecen después del encabezado Bienvenido.

  • ENDPOINT_REGION: Es la región en la que implementaste el extremo.

  • ENDPOINT_ID: Para encontrar el ID de tu extremo, míralo en la consola o ejecuta el comando gcloud ai endpoints list. Necesitarás el nombre y la región del extremo del panel Implementar modelo.

    Console

    Para ver los detalles del extremo, haz clic en Predicción en línea > Endpoints y selecciona tu región. Toma nota del número que aparece en la columna ID.

    Ir a Endpoints

    gcloud

    Puedes ver los detalles del extremo ejecutando el comando gcloud ai endpoints list.

    gcloud ai endpoints list \
      --region=ENDPOINT_REGION \
      --filter=display_name=ENDPOINT_NAME
    

    El resultado se verá así:

    Using endpoint [https://us-central1-aiplatform.googleapis.com/]
    ENDPOINT_ID: 1234567891234567891
    DISPLAY_NAME: gemma2-2b-it-mg-one-click-deploy
    

Código de muestra

En el código de muestra de tu lenguaje, actualiza PROJECT_ID, ENDPOINT_REGION y ENDPOINT_ID. Luego, ejecuta tu código.

Python

Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Para obtener más información, consulta la documentación de referencia de la API de Python.

"""
Sample to run inference on a Gemma2 model deployed to a Vertex AI endpoint with GPU accellerators.
"""

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

# TODO(developer): Update & uncomment lines below
# PROJECT_ID = "your-project-id"
# ENDPOINT_REGION = "your-vertex-endpoint-region"
# ENDPOINT_ID = "your-vertex-endpoint-id"

# Default configuration
config = {"max_tokens": 1024, "temperature": 0.9, "top_p": 1.0, "top_k": 1}

# Prompt used in the prediction
prompt = "Why is the sky blue?"

# Encapsulate the prompt in a correct format for GPUs
# Example format: [{'inputs': 'Why is the sky blue?', 'parameters': {'temperature': 0.9}}]
input = {"inputs": prompt, "parameters": config}

# Convert input message to a list of GAPIC instances for model input
instances = [json_format.ParseDict(input, Value())]

# Create a client
api_endpoint = f"{ENDPOINT_REGION}-aiplatform.googleapis.com"
client = aiplatform.gapic.PredictionServiceClient(
    client_options={"api_endpoint": api_endpoint}
)

# Call the Gemma2 endpoint
gemma2_end_point = (
    f"projects/{PROJECT_ID}/locations/{ENDPOINT_REGION}/endpoints/{ENDPOINT_ID}"
)
response = client.predict(
    endpoint=gemma2_end_point,
    instances=instances,
)
text_responses = response.predictions
print(text_responses[0])

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

async function gemma2PredictGpu(predictionServiceClient) {
  // Imports the Google Cloud Prediction Service Client library
  const {
    // TODO(developer): Uncomment PredictionServiceClient before running the sample.
    // PredictionServiceClient,
    helpers,
  } = require('@google-cloud/aiplatform');
  /**
   * TODO(developer): Update these variables before running the sample.
   */
  const projectId = 'your-project-id';
  const endpointRegion = 'your-vertex-endpoint-region';
  const endpointId = 'your-vertex-endpoint-id';

  // Default configuration
  const config = {maxOutputTokens: 1024, temperature: 0.9, topP: 1.0, topK: 1};
  // Prompt used in the prediction
  const prompt = 'Why is the sky blue?';

  // Encapsulate the prompt in a correct format for GPUs
  // Example format: [{inputs: 'Why is the sky blue?', parameters: {temperature: 0.9}}]
  const input = {
    inputs: prompt,
    parameters: config,
  };

  // Convert input message to a list of GAPIC instances for model input
  const instances = [helpers.toValue(input)];

  // TODO(developer): Uncomment apiEndpoint and predictionServiceClient before running the sample.
  // const apiEndpoint = `${endpointRegion}-aiplatform.googleapis.com`;

  // Create a client
  // predictionServiceClient = new PredictionServiceClient({apiEndpoint});

  // Call the Gemma2 endpoint
  const gemma2Endpoint = `projects/${projectId}/locations/${endpointRegion}/endpoints/${endpointId}`;

  const [response] = await predictionServiceClient.predict({
    endpoint: gemma2Endpoint,
    instances,
  });

  const predictions = response.predictions;
  const text = predictions[0].stringValue;

  console.log('Predictions:', text);
  return text;
}

module.exports = gemma2PredictGpu;

// TODO(developer): Uncomment below lines before running the sample.
// gemma2PredictGpu(...process.argv.slice(2)).catch(err => {
//   console.error(err.message);
//   process.exitCode = 1;
// });

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.gson.Gson;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class Gemma2PredictGpu {

  private final PredictionServiceClient predictionServiceClient;

  // Constructor to inject the PredictionServiceClient
  public Gemma2PredictGpu(PredictionServiceClient predictionServiceClient) {
    this.predictionServiceClient = predictionServiceClient;
  }

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String endpointRegion = "us-east4";
    String endpointId = "YOUR_ENDPOINT_ID";

    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint(String.format("%s-aiplatform.googleapis.com:443", endpointRegion))
            .build();
    PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings);
    Gemma2PredictGpu creator = new Gemma2PredictGpu(predictionServiceClient);

    creator.gemma2PredictGpu(projectId, endpointRegion, endpointId);
  }

  // Demonstrates how to run inference on a Gemma2 model
  // deployed to a Vertex AI endpoint with GPU accelerators.
  public String gemma2PredictGpu(String projectId, String region,
               String endpointId) throws IOException {
    Map<String, Object> paramsMap = new HashMap<>();
    paramsMap.put("temperature", 0.9);
    paramsMap.put("maxOutputTokens", 1024);
    paramsMap.put("topP", 1.0);
    paramsMap.put("topK", 1);
    Value parameters = mapToValue(paramsMap);

    // Prompt used in the prediction
    String instance = "{ \"inputs\": \"Why is the sky blue?\"}";
    Value.Builder instanceValue = Value.newBuilder();
    JsonFormat.parser().merge(instance, instanceValue);
    // Encapsulate the prompt in a correct format for GPUs
    // Example format: [{'inputs': 'Why is the sky blue?', 'parameters': {'temperature': 0.8}}]
    List<Value> instances = new ArrayList<>();
    instances.add(instanceValue.build());

    EndpointName endpointName = EndpointName.of(projectId, region, endpointId);

    PredictResponse predictResponse = this.predictionServiceClient
        .predict(endpointName, instances, parameters);
    String textResponse = predictResponse.getPredictions(0).getStringValue();
    System.out.println(textResponse);
    return textResponse;
  }

  private static Value mapToValue(Map<String, Object> map) throws InvalidProtocolBufferException {
    Gson gson = new Gson();
    String json = gson.toJson(map);
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(json, builder);
    return builder.build();
  }
}

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Go.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/protobuf/types/known/structpb"
)

// predictGPU demonstrates how to run interference on a Gemma2 model deployed to a Vertex AI endpoint with GPU accelerators.
func predictGPU(w io.Writer, client PredictionsClient, projectID, location, endpointID string) error {
	ctx := context.Background()

	// Note: client can be initialized in the following way:
	// apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	// client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	// if err != nil {
	// 	return fmt.Errorf("unable to create prediction client: %v", err)
	// }
	// defer client.Close()

	gemma2Endpoint := fmt.Sprintf("projects/%s/locations/%s/endpoints/%s", projectID, location, endpointID)
	prompt := "Why is the sky blue?"
	parameters := map[string]interface{}{
		"temperature":     0.9,
		"maxOutputTokens": 1024,
		"topP":            1.0,
		"topK":            1,
	}

	// Encapsulate the prompt in a correct format for TPUs.
	// Pay attention that prompt should be set in "inputs" field.
	// Example format: [{'inputs': 'Why is the sky blue?', 'parameters': {'temperature': 0.9}}]
	promptValue, err := structpb.NewValue(map[string]interface{}{
		"inputs":     prompt,
		"parameters": parameters,
	})
	if err != nil {
		fmt.Fprintf(w, "unable to convert prompt to Value: %v", err)
		return err
	}

	req := &aiplatformpb.PredictRequest{
		Endpoint:  gemma2Endpoint,
		Instances: []*structpb.Value{promptValue},
	}

	resp, err := client.Predict(ctx, req)
	if err != nil {
		return err
	}

	prediction := resp.GetPredictions()
	value := prediction[0].GetStringValue()
	fmt.Fprintf(w, "%v", value)

	return nil
}