某些开放模型支持“思考”模式,可让它们在提供最终答案之前执行分步推理。这对于需要透明逻辑的任务非常有用,例如数学证明、复杂的代码调试或多步智能体规划。
特定于模型的指导
以下部分提供了针对特定模型的思维指导。
DeepSeek R1 0528
对于 DeepSeek R1 0528,推理过程包含在 content
字段中的 <think></think>
标记之间。没有 reasoning_content
字段。
示例请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/test-project/locations/us-central1/endpoints/openapi/chat/completions -d '{
"model": "deepseek-ai/deepseek-r1-0528-maas",
"messages": [{
"role": "user",
"content": "Who are you?"
}]
}'
示例回答:
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"message": {
"content": "<think>\nHmm, the user just asked \u201cWho are you?\u201d -
a simple but fundamental question. \n\nFirst, let's consider the
context. This is likely their first interaction, so they're probably
testing the waters or genuinely curious about what I am. The phrasing is
neutral - no urgency or frustration detected. \n\nI should keep my
response warm and informative without being overwhelming. Since they
didn't specify language preference, I'll default to English but note
they might be multilingual. \n\nKey points to cover:\n- My identity
(DeepSeek-R1)\n- My capabilities \n- My purpose (being helpful)\n- Tone:
friendly with emojis to seem approachable\n- Ending with an open
question to continue conversation\n\nThe smiley face feels appropriate
here - establishes friendliness. Mentioning \u201cAI assistant\u201d
upfront avoids confusion. Listing examples of what I can do gives
concrete value. Ending with \u201cHow can I help?\u201d turns it into an
active conversation starter. \n\nNot adding too much technical detail
(like model specs) since that might overwhelm a first-time user. The
\u201calways learning\u201d phrase subtly manages expectations about my
limitations.\n</think>\nI'm DeepSeek-R1, your friendly AI assistant!
\ud83d\ude0a \nI'm here to help you with questions, ideas, problems, or
just a chat\u2014whether it's about homework, writing, coding, career
advice, or fun trivia. I can read files (like PDFs, Word, Excel, etc.),
browse the web for you (if enabled), and I'm always learning to be more
helpful!\n\nSo\u2026 how can I help you today? \ud83d\udcac\u2728",
"role": "assistant"
}
}
],
"created": 1758229877,
"id": "dXXMaKrsKqaQm9IPsLeTkAQ",
"model": "deepseek-ai/deepseek-r1-0528-maas",
"object": "chat.completion",
"system_fingerprint": "",
"usage": {
"completion_tokens": 329,
"prompt_tokens": 9,
"total_tokens": 338
}
}
DeepSeek v3.1
DeepSeek-V3.1 支持混合推理,可让您开启或关闭推理功能。默认情况下,推理功能处于关闭状态。如需启用推理功能,请在请求中添加 "chat_template_kwargs": { "thinking": true }
。
启用推理功能后,系统会在 content
字段的开头显示推理文本,然后显示 </think>
,最后显示回答文本(例如 THINKING_TEXT</think>ANSWER_TEXT
)。请注意,开头没有 <think>
标记。
示例请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-west2-aiplatform.googleapis.com/v1/projects/test-project/locations/us-west2/endpoints/openapi/chat/completions -d '{
"model": "deepseek-ai/deepseek-v3.1-maas",
"messages": [{
"role": "user",
"content": "What are the first 3 even prime numbers?"
}],
"chat_template_kwargs": {
"thinking": true
}
}'
示例回答:
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"matched_stop": 1,
"message": {
"content": "SNIPPED</think>The only even prime number is 2. By
definition, a prime number is a natural number greater than 1 that has
no positive divisors other than 1 and itself. Since all even numbers
other than 2 are divisible by 2 and themselves, they have at least three
divisors and are not prime. Therefore, there are no second or third even
prime numbers. The concept of \"first three even prime numbers\" is not
applicable beyond the first one.",
"reasoning_content": null,
"role": "assistant",
"tool_calls": null
}
}
],
"created": 1758229458,
"id": "ynPMaIWPN-KeltsPh87s0Qg",
"model": "deepseek-ai/deepseek-v3.1-maas",
"object": "chat.completion",
"usage": {
"completion_tokens": 1525,
"prompt_tokens": 17,
"prompt_tokens_details": null,
"total_tokens": 1542
}
}
Qwen3-Next Thinking
对于 Qwen3-Next Thinking 模型,推理 token 位于 reasoning_content
字段中,正常回答文本位于 content
字段中。
示例请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://aiplatform.googleapis.com/v1/projects/test-project/locations/global/endpoints/openapi/chat/completions -d '{
"model": "qwen/qwen3-next-80b-a3b-thinking-maas",
"messages": [{
"role": "user",
"content": "Who are you?"
}]
}'
示例回答:
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"matched_stop": 151645,
"message": {
"content": "Hello! I'm Qwen, a large language model developed by Alibaba
Cloud. I can help answer questions, write stories, emails, scripts,
perform logical reasoning, code, and more. How can I assist you today?
\ud83d\ude0a",
"reasoning_content": "Okay, the user asked, Who are you?
I need to respond appropriately. First, I should state my name clearly:
I am Qwen, a large language model developed by Alibaba Cloud. Then,
maybe mention my capabilities, like answering questions, writing
stories, emails, scripts, logical reasoning, programming, etc. Also,
highlight that I can express views and play games. But keep it concise
since the user might just want a brief intro.\n\nWait, the user might
not know much about me, so I should explain what I can do in simple
terms. Maybe add something about being trained on a large amount of
data, so I can handle various topics. But don't get too technical. Also,
maybe mention that I'm here to help. Should I ask if they have any
specific questions? That might be good to invite further
interaction.\n\nLet me check the structure. Start with a greeting,
introduce myself, list key abilities, and offer assistance. Keep it
friendly and approachable. Avoid jargon. Maybe say something like \"I'm
Qwen, a large language model created by Alibaba Cloud. I can help with
answering questions, writing, coding, and more. How can I assist you
today?\" That seems good.\n\nWait, the original response in Chinese
might be different, but the user asked in English, so the response
should be in English. Let me confirm. The user's query is in English, so
I should respond in English. Yes.\n\nAlso, check for any specific
details. Maybe mention that I have 128K context length, but maybe that's
too technical. Maybe just say \"I have a large context window\" or not
necessary. For a basic introduction, maybe stick to the main points
without too many specs. The user might not need the technical details
right away.\n\nSo, the response should be: Hello! I'm Qwen, a large
language model developed by Alibaba Cloud. I can help answer questions,
write stories, emails, scripts, perform logical reasoning, code, and
more. How can I assist you today? That's concise and covers the main
points.\n\nWait, in the initial problem statement, the user's question
is \"Who are you?\" So the standard response would be to introduce
myself. Yes. Also, maybe add that I'm an AI language model, but the name
Qwen is important. So the key elements are name, developer,
capabilities, and offer help.\n\nYes. Let me make sure there's no
mistake. Alibaba Cloud is the correct developer. Yes. So the response
should be accurate. Alright, that seems good.\n",
"role": "assistant",
"tool_calls": null
}
}
],
"created": 1758229652,
"id": "knTMaJC0EJfM5OMP7I3xkAk",
"metadata": {
"weight_version": "default"
},
"model": "qwen/qwen3-next-80b-a3b-thinking-maas",
"object": "chat.completion",
"usage": {
"completion_tokens": 573,
"prompt_tokens": 14,
"prompt_tokens_details": null,
"reasoning_tokens": 0,
"total_tokens": 587
}
}
GPT OSS
对于 GPT OSS 模型,思考文本位于 reasoning_content
字段中,而正常回答文本位于 content
字段中。这些模型还支持 reasoning_effort
参数。
示例请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/test-project/locations/us-central1/endpoints/openapi/chat/completions -d '{
"model": "openai/gpt-oss-120b-maas",
"messages": [{
"role": "user",
"content": "Who are you?"
}],
"reasoning_effort": "high"
}'
示例回答:
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"logprobs": null,
"matched_stop": 200002,
"message": {
"content": "I\u2019m ChatGPT, a large language model created by OpenAI
(based on the GPT\u20114 architecture). I\u2019m here to help answer
your questions, brainstorm ideas, explain concepts, and assist with a
wide variety of topics. Let me know what you\u2019d like to talk
about!",
"reasoning_content": "The user asks: \"Who are you?\" It's a simple
question. They want to know who the assistant is. According to policy,
we should respond with a brief, friendly description: \"I am ChatGPT, a
large language model trained by OpenAI.\" Possibly mention the version
(GPT-4). Also mention we are here to assist. There's no request for
disallowed content. So a straightforward answer. Possibly ask if they
need help. Provide a short intro.\n\nThus answer: \"I am ChatGPT, a
large language model trained by OpenAI. I'm here to help answer your
questions...\"\n\nWe should avoid disallowed content. It's fine.\n\nThus
final answer.",
"role": "assistant",
"tool_calls": null
}
}
],
"created": 1758229799,
"id": "JnXMaJq6HLGzquEP4OD18Qg",
"metadata": {
"weight_version": "default"
},
"model": "openai/gpt-oss-120b-maas",
"object": "chat.completion",
"usage": {
"completion_tokens": 201,
"prompt_tokens": 71,
"prompt_tokens_details": null,
"reasoning_tokens": 0,
"total_tokens": 272
}
}