Entrega modelos abiertos de Gemma mediante GPUs en GKE con Hugging Face TGI

En este instructivo, se muestra cómo implementar y entregar modelos de lenguaje grandes (LLM) con GPUs en Google Kubernetes Engine (GKE) con el framework de entrega de Inferencia de generación de texto (TGI) de Hugging Face. En este instructivo, se proporcionan los conceptos básicos para comprender y explorar la implementación práctica de LLM para la inferencia en un entorno de Kubernetes administrado. Implementas en GKE un contenedor precompilado que ejecuta TGI. También configurarás GKE para cargar las ponderaciones de Gemma 2B, 9B y 27B desde Hugging Face.

Este instructivo está dirigido a ingenieros de aprendizaje automático (AA), administradores y operadores de plataformas, y especialistas en datos y en IA que estén interesados en usar las capacidades de organización de contenedores de Kubernetes para entregar LLMs en hardware de GPU H100, A100 y L4. Para obtener más información sobre los roles comunes y las tareas de ejemplo a las que hacemos referencia en el contenido de Google Cloud , consulta Roles y tareas comunes de los usuarios de GKE.

Si necesitas una plataforma de IA administrada unificada para compilar y entregar modelos de AA con rapidez de forma rentable, te recomendamos que pruebes nuestra solución de implementación de Vertex AI.

Antes de leer esta página, asegúrate de estar familiarizado con lo siguiente:

Fondo

En esta sección, se describen las tecnologías clave que se usan en este instructivo.

Gemma

Gemma es un conjunto de modelos de Inteligencia Artificial (IA) generativos básicos disponibles de forma abierta que se lanzaron con una licencia abierta. Estos modelos de IA están disponibles para ejecutarse en tus aplicaciones, hardware, dispositivos móviles o servicios alojados.

En esta guía, presentamos los siguientes modelos:

  • Gemma para la generación de texto, también puedes ajustar estos modelos para que se especialicen en realizar tareas específicas.
  • CodeGemma es una colección de modelos potentes y ligeros que pueden realizar una variedad de tareas de programación, como completar código en el medio, generar código, comprender el lenguaje natural, razonar matemáticamente y seguir instrucciones.

Para obtener más información, consulta la documentación de Gemma.

GPU

Las GPUs te permiten acelerar cargas de trabajo específicas que se ejecutan en tus nodos, como el aprendizaje automático y el procesamiento de datos. GKE proporciona una variedad de opciones de tipos de máquinas para la configuración de nodos, incluidos los tipos de máquinas con GPUs NVIDIA H100, L4 y A100.

Inferencia de generación de texto (TGI)

TGI es el kit de herramientas de Hugging Face para implementar y entregar LLMs. TGI permite la generación de texto de alto rendimiento para LLMs de código abierto populares, incluido Gemma. El TGI incluye funciones como las siguientes:

Para obtener más información, consulta la documentación de la TGI.

Objetivos

  1. Preparar tu entorno con un clúster de GKE en modo Autopilot.
  2. Implementar TGI en tu clúster.
  3. Usar TGI para entregar el modelo de Gemma 2 a través de curl y una interfaz de chat web.

Antes de comenzar

  • Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  • In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator role (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  • Verify that billing is enabled for your Google Cloud project.

  • Enable the required API.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the API

  • In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator role (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  • Verify that billing is enabled for your Google Cloud project.

  • Enable the required API.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the API

  • Make sure that you have the following role or roles on the project: roles/container.admin, roles/iam.serviceAccountAdmin

    Check for the roles

    1. In the Google Cloud console, go to the IAM page.

      Go to IAM
    2. Select the project.
    3. In the Principal column, find all rows that identify you or a group that you're included in. To learn which groups you're included in, contact your administrator.

    4. For all rows that specify or include you, check the Role column to see whether the list of roles includes the required roles.

    Grant the roles

    1. In the Google Cloud console, go to the IAM page.

      Ir a IAM
    2. Selecciona el proyecto.
    3. Haz clic en Otorgar acceso.
    4. En el campo Principales nuevas, ingresa tu identificador de usuario. Esta suele ser la dirección de correo electrónico de una Cuenta de Google.

    5. En la lista Seleccionar un rol, elige uno.
    6. Para otorgar roles adicionales, haz clic en Agregar otro rol y agrega uno más.
    7. Haz clic en Guardar.
    8. Obtén acceso al modelo

      Para obtener acceso a los modelos de Gemma para la implementación en GKE, primero debes firmar el contrato de consentimiento de licencia y, luego, generar un token de acceso de Hugging Face.

      Debes firmar el acuerdo de consentimiento para usar Gemma. Sigue estas instrucciones:

      1. Accede a la página de consentimiento del modelo en Kaggle.com.
      2. Verifica el consentimiento con tu cuenta de Hugging Face.
      3. Acepta los términos del modelo.

      Genera un token de acceso

      Para acceder al modelo a través de Hugging Face, necesitarás un token de Hugging Face.

      Sigue estos pasos para generar un token nuevo si aún no tienes uno:

      1. Haz clic en Tu perfil > Configuración > Tokens de acceso.
      2. Selecciona Token nuevo.
      3. Especifica el nombre que desees y un rol de al menos Read.
      4. Selecciona Genera un token.
      5. Copia el token generado al portapapeles.

      Prepara el entorno

      En este instructivo, usarás Cloud Shell para administrar recursos alojados enGoogle Cloud. Cloud Shell tiene preinstalado el software que necesitarás para este instructivo, incluidos kubectl y la CLI de gcloud.

      Para configurar tu entorno con Cloud Shell, sigue estos pasos:

      1. En la Google Cloud consola, haz clic en Ícono de activación de Cloud Shell Activar Cloud Shell en la Google Cloud consola para iniciar una sesión de Cloud Shell. Esto inicia una sesión en el panel inferior de la consola de Google Cloud .

      2. Configura las variables de entorno predeterminadas:

        gcloud config set project PROJECT_ID
        gcloud config set billing/quota_project PROJECT_ID
        export PROJECT_ID=$(gcloud config get project)
        export CONTROL_PLANE_LOCATION=CONTROL_PLANE_LOCATION
        export CLUSTER_NAME=CLUSTER_NAME
        export HF_TOKEN=HF_TOKEN
        

        Reemplaza los siguientes valores:

        • PROJECT_ID: Es el ID de tu proyecto. Google Cloud
        • CONTROL_PLANE_LOCATION: La región de Compute Engine del plano de control de tu clúster. Esta región debe admitir el tipo de acelerador que deseas usar, por ejemplo, us-central1 para la GPU L4.
        • CLUSTER_NAME: El nombre de tu clúster.
        • HF_TOKEN: El token de Hugging Face que generaste antes.

      Crea y configura recursos de Google Cloud

      Sigue estas instrucciones para crear los recursos necesarios.

      Crea un clúster de GKE y un grupo de nodos

      Puedes entregar Gemma en GPU en un clúster de GKE Autopilot o Standard. Te recomendamos que uses un clúster de Autopilot para una experiencia de Kubernetes completamente administrada. Para elegir el modo de operación de GKE que se adapte mejor a tus cargas de trabajo, consulta Elige un modo de operación de GKE.

      Autopilot

      En Cloud Shell, ejecute el siguiente comando:

      gcloud container clusters create-auto CLUSTER_NAME \
          --project=PROJECT_ID \
          --location=CONTROL_PLANE_LOCATION \
          --release-channel=rapid
      

      Reemplaza los siguientes valores:

      • PROJECT_ID: Es el ID de tu proyecto. Google Cloud
      • CONTROL_PLANE_LOCATION: La región de Compute Engine del plano de control de tu clúster. Esta región debe admitir el tipo de acelerador que deseas usar, por ejemplo, us-central1 para la GPU L4.
      • CLUSTER_NAME: El nombre de tu clúster.

      GKE crea un clúster de Autopilot con nodos de CPU y GPU según lo solicitan las cargas de trabajo implementadas.

      Estándar

      1. En Cloud Shell, ejecuta el siguiente comando para crear un clúster estándar:

        gcloud container clusters create CLUSTER_NAME \
            --project=PROJECT_ID \
            --location=CONTROL_PLANE_LOCATION \
            --workload-pool=PROJECT_ID.svc.id.goog \
            --release-channel=rapid \
            --num-nodes=1
        

        Reemplaza los siguientes valores:

        • PROJECT_ID: Es el ID de tu proyecto. Google Cloud
        • CONTROL_PLANE_LOCATION: La región de Compute Engine del plano de control de tu clúster. Esta región debe admitir el tipo de acelerador que deseas usar, por ejemplo, us-central1 para la GPU L4.
        • CLUSTER_NAME: El nombre de tu clúster.

        La creación del clúster puede tomar varios minutos.

      2. Para crear un grupo de nodos para tu clúster con el tamaño de disco adecuado, ejecuta el siguiente comando:

        Gemma 2 2B

        gcloud container node-pools create gpupool \
            --accelerator type=nvidia-l4,count=1,gpu-driver-version=latest \
            --project=PROJECT_ID \
            --location=CONTROL_PLANE_LOCATION \
            --node-locations=CONTROL_PLANE_LOCATION-a \
            --cluster=CLUSTER_NAME \
            --machine-type=g2-standard-8 \
            --num-nodes=1
        

        GKE crea un grupo de nodos único que contiene una GPU L4 para cada nodo.

        Gemma 2 9B

        gcloud container node-pools create gpupool \
            --accelerator type=nvidia-l4,count=2,gpu-driver-version=latest \
            --project=PROJECT_ID \
            --location=CONTROL_PLANE_LOCATION \
            --node-locations=CONTROL_PLANE_LOCATION-a \
            --cluster=CLUSTER_NAME \
            --machine-type=g2-standard-24 \
            --num-nodes=1
        

        GKE crea un solo grupo de nodos que contiene dos GPU L4 para cada nodo.

        Gemma 2 27B

        gcloud container node-pools create gpupool \
            --accelerator type=nvidia-l4,count=4,gpu-driver-version=latest \
            --project=PROJECT_ID \
            --location=CONTROL_PLANE_LOCATION \
            --node-locations=CONTROL_PLANE_LOCATION-a \
            --cluster=CLUSTER_NAME \
            --machine-type=g2-standard-48 \
            --num-nodes=1 \
            --disk-size=180
        

        GKE crea un solo grupo de nodos que contiene cuatro GPU L4 para cada nodo.

      Crea un secreto de Kubernetes para las credenciales de Hugging Face

      En Cloud Shell, haz lo siguiente:

      1. Configura kubectl para comunicarse con tu clúster:

        gcloud container clusters get-credentials CLUSTER_NAME \
            --location=CONTROL_PLANE_LOCATION
        
      2. Crea un Secret de Kubernetes que contenga el token de Hugging Face:

        kubectl create secret generic hf-secret \
            --from-literal=hf_api_token=HF_TOKEN \
            --dry-run=client -o yaml | kubectl apply -f -
        

        Reemplaza HF_TOKEN por el token de Hugging Face que generaste antes.

      Implementa TGI

      En esta sección, implementarás el contenedor de TGI para entregar el modelo de Gemma que deseas usar. Para implementar el modelo, en este instructivo, se usan implementaciones de Kubernetes. Un Deployment es un objeto de la API de Kubernetes que te permite ejecutar varias réplicas de Pods que se distribuyen entre los nodos de un clúster.

      Gemma 2 2B-it

      Sigue estas instrucciones para implementar el modelo ajustado por instrucciones de Gemma 2B.

      1. Crea el siguiente manifiesto tgi-2-2b-it.yaml:

        apiVersion: apps/v1
        kind: Deployment
        metadata:
          name: tgi-gemma-deployment
        spec:
          replicas: 1
          selector:
            matchLabels:
              app: gemma-server
          template:
            metadata:
              labels:
                app: gemma-server
                ai.gke.io/model: gemma-2-2b-it
                ai.gke.io/inference-server: text-generation-inference
                examples.ai.gke.io/source: user-guide
            spec:
              containers:
              - name: inference-server
                image: us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu124.2-3.ubuntu2204.py311
                resources:
                  requests:
                    cpu: "2"
                    memory: "10Gi"
                    ephemeral-storage: "10Gi"
                    nvidia.com/gpu: "1"
                  limits:
                    cpu: "2"
                    memory: "10Gi"
                    ephemeral-storage: "10Gi"
                    nvidia.com/gpu: "1"
                env:
                - name: AIP_HTTP_PORT
                  value: '8000'
                - name: NUM_SHARD
                  value: '1'
                - name: MAX_INPUT_LENGTH
                  value: '1562'
                - name: MAX_TOTAL_TOKENS
                  value: '2048'
                - name: MAX_BATCH_PREFILL_TOKENS
                  value: '2048'
                - name: CUDA_MEMORY_FRACTION
                  value: '0.93'
                - name: MODEL_ID
                  value: google/gemma-2-2b-it
                - name: HUGGING_FACE_HUB_TOKEN
                  valueFrom:
                    secretKeyRef:
                      name: hf-secret
                      key: hf_api_token
                volumeMounts:
                - mountPath: /dev/shm
                  name: dshm
              volumes:
              - name: dshm
                emptyDir:
                  medium: Memory
              nodeSelector:
                cloud.google.com/gke-accelerator: nvidia-l4
        ---
        apiVersion: v1
        kind: Service
        metadata:
          name: llm-service
        spec:
          selector:
            app: gemma-server
          type: ClusterIP
          ports:
          - protocol: TCP
            port: 8000
            targetPort: 8000
      2. Aplica el manifiesto

        kubectl apply -f tgi-2-2b-it.yaml
        

      Gemma 2 9B-it

      Sigue estas instrucciones para implementar el modelo ajustado por instrucciones de Gemma 9B.

      1. Crea el siguiente manifiesto tgi-2-9b-it.yaml:

        apiVersion: apps/v1
        kind: Deployment
        metadata:
          name: tgi-gemma-deployment
        spec:
          replicas: 1
          selector:
            matchLabels:
              app: gemma-server
          template:
            metadata:
              labels:
                app: gemma-server
                ai.gke.io/model: gemma-2-9b-it
                ai.gke.io/inference-server: text-generation-inference
                examples.ai.gke.io/source: user-guide
            spec:
              containers:
              - name: inference-server
                image: us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu124.2-3.ubuntu2204.py311
                resources:
                  requests:
                    cpu: "4"
                    memory: "30Gi"
                    ephemeral-storage: "30Gi"
                    nvidia.com/gpu: "2"
                  limits:
                    cpu: "4"
                    memory: "30Gi"
                    ephemeral-storage: "30Gi"
                    nvidia.com/gpu: "2"
                env:
                - name: AIP_HTTP_PORT
                  value: '8000'
                - name: NUM_SHARD
                  value: '2'
                - name: MAX_INPUT_LENGTH
                  value: '1562'
                - name: MAX_TOTAL_TOKENS
                  value: '2048'
                - name: MAX_BATCH_PREFILL_TOKENS
                  value: '2048'
                - name: CUDA_MEMORY_FRACTION
                  value: '0.93'
                - name: MODEL_ID
                  value: google/gemma-2-9b-it
                - name: HUGGING_FACE_HUB_TOKEN
                  valueFrom:
                    secretKeyRef:
                      name: hf-secret
                      key: hf_api_token
                volumeMounts:
                - mountPath: /dev/shm
                  name: dshm
              volumes:
              - name: dshm
                emptyDir:
                  medium: Memory
              nodeSelector:
                cloud.google.com/gke-accelerator: nvidia-l4
        ---
        apiVersion: v1
        kind: Service
        metadata:
          name: llm-service
        spec:
          selector:
            app: gemma-server
          type: ClusterIP
          ports:
          - protocol: TCP
            port: 8000
            targetPort: 8000
      2. Aplica el manifiesto

        kubectl apply -f tgi-2-9b-it.yaml
        

      Gemma 2 27B-it

      Sigue estas instrucciones para implementar el modelo ajustado por instrucciones de Gemma 2 27B

      1. Crea el siguiente manifiesto tgi-2-27b-it.yaml:

        apiVersion: apps/v1
        kind: Deployment
        metadata:
          name: tgi-gemma-deployment
        spec:
          replicas: 1
          selector:
            matchLabels:
              app: gemma-server
          template:
            metadata:
              labels:
                app: gemma-server
                ai.gke.io/model: gemma-2-27b-it
                ai.gke.io/inference-server: text-generation-inference
                examples.ai.gke.io/source: user-guide
            spec:
              containers:
              - name: inference-server
                image: us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu124.2-3.ubuntu2204.py311
                resources:
                  requests:
                    cpu: "10"
                    memory: "80Gi"
                    ephemeral-storage: "80Gi"
                    nvidia.com/gpu: "4"
                  limits:
                    cpu: "10"
                    memory: "80Gi"
                    ephemeral-storage: "80Gi"
                    nvidia.com/gpu: "4"
                env:
                - name: AIP_HTTP_PORT
                  value: '8000'
                - name: NUM_SHARD
                  value: '4'
                - name: MAX_INPUT_LENGTH
                  value: '1562'
                - name: MAX_TOTAL_TOKENS
                  value: '2048'
                - name: MAX_BATCH_PREFILL_TOKENS
                  value: '2048'
                - name: CUDA_MEMORY_FRACTION
                  value: '0.93'
                - name: MODEL_ID
                  value: google/gemma-2-27b-it
                - name: HUGGING_FACE_HUB_TOKEN
                  valueFrom:
                    secretKeyRef:
                      name: hf-secret
                      key: hf_api_token
                volumeMounts:
                - mountPath: /dev/shm
                  name: dshm
              volumes:
              - name: dshm
                emptyDir:
                  medium: Memory
              nodeSelector:
                cloud.google.com/gke-accelerator: nvidia-l4
        ---
        apiVersion: v1
        kind: Service
        metadata:
          name: llm-service
        spec:
          selector:
            app: gemma-server
          type: ClusterIP
          ports:
          - protocol: TCP
            port: 8000
            targetPort: 8000
      2. Aplica el manifiesto

        kubectl apply -f tgi-2-27b-it.yaml
        

      CodeGemma 7B-it

      Sigue estas instrucciones para implementar el modelo ajustado por instrucciones de CodeGemma 7B.

      1. Crea el siguiente manifiesto tgi-codegemma-1.1-7b-it.yaml:

        apiVersion: apps/v1
        kind: Deployment
        metadata:
          name: tgi-gemma-deployment
        spec:
          replicas: 1
          selector:
            matchLabels:
              app: gemma-server
          template:
            metadata:
              labels:
                app: gemma-server
                ai.gke.io/model: codegemma-1.1-7b-it
                ai.gke.io/inference-server: text-generation-inference
                examples.ai.gke.io/source: user-guide
            spec:
              containers:
              - name: inference-server
                image: us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu124.2-3.ubuntu2204.py311
                resources:
                  requests:
                    cpu: "2"
                    memory: "25Gi"
                    ephemeral-storage: "40Gi"
                    nvidia.com/gpu: 2
                  limits:
                    cpu: "10"
                    memory: "25Gi"
                    ephemeral-storage: "40Gi"
                    nvidia.com/gpu: 2
                args:
                - --model-id=$(MODEL_ID)
                - --num-shard=2
                env:
                - name: MODEL_ID
                  value: google/codegemma-1.1-7b-it
                - name: PORT
                  value: "8000"
                - name: HUGGING_FACE_HUB_TOKEN
                  valueFrom:
                    secretKeyRef:
                      name: hf-secret
                      key: hf_api_token
                volumeMounts:
                - mountPath: /dev/shm
                  name: dshm
              volumes:
              - name: dshm
                emptyDir:
                  medium: Memory
              nodeSelector:
                cloud.google.com/gke-accelerator: nvidia-l4
        ---
        apiVersion: v1
        kind: Service
        metadata:
          name: llm-service
        spec:
          selector:
            app: gemma-server
          type: ClusterIP
          ports:
            - protocol: TCP
              port: 8000
              targetPort: 8000
      2. Aplica el manifiesto

        kubectl apply -f tgi-codegemma-1.1-7b-it.yaml
        

      Entrega el modelo

      En esta sección, interactuarás con el modelo.

      Configura la redirección de puertos

      Ejecuta el siguiente comando para configurar la redirección de puertos al modelo:

      kubectl port-forward service/llm-service 8000:8000
      

      El resultado es similar al siguiente:

      Forwarding from 127.0.0.1:8000 -> 8000
      

      Interactúa con el modelo con curl

      En esta sección, se muestra cómo puedes realizar una prueba de humo básica para verificar los modelos implementados previamente entrenados o los ajustados por instrucciones. Para simplificar, en esta sección se describe el enfoque de prueba con los modelos Gemma 2 ajustado por instrucciones y CodeGemma.

      Gemma 2

      En una sesión de terminal nueva, usa curl para chatear con tu modelo:

      USER_PROMPT="I'm new to coding. If you could only recommend one programming language to start with, what would it be and why?"
      
      curl -X POST http://localhost:8000/generate \
        -H "Content-Type: application/json" \
        -d @- <<EOF
      {
          "inputs": "<start_of_turn>user\n${USER_PROMPT}<end_of_turn>\n",
          "parameters": {
              "temperature": 0.90,
              "top_p": 0.95,
              "max_new_tokens": 128
          }
      }
      EOF
      

      El resultado muestra un ejemplo de la respuesta del modelo.

      {"generated_text":"**Python**\n\n**Reasons why Python is a great choice for beginners:**\n\n* **Simple syntax:** Python uses clear and concise syntax, making it easy for beginners to pick up.\n* **Easy to learn:** Python's syntax is based on English, making it easier to learn than other languages.\n* **Large and supportive community:** Python has a massive and active community of developers who are constantly willing to help.\n* **Numerous libraries and tools:** Python comes with a vast collection of libraries and tools that make it easy to perform various tasks, such as data manipulation, web development, and machine learning.\n* **"}
      

      CodeGemma

      En una sesión de terminal nueva, usa curl para chatear con tu modelo:

      USER_PROMPT="Generate a python code example of a adding two numbers from a function called addNumbers"
      
      curl -s -X POST http://localhost:8000/generate \
        -H "Content-Type: application/json" \
        -d @- <<EOF | jq -r .generated_text
      {
          "inputs": "<start_of_turn>user\n${USER_PROMPT}<end_of_turn>\n",
          "parameters": {
              "temperature": 0.90,
              "top_p": 0.95,
              "max_new_tokens": 2000
          }
      }
      EOF
      

      El resultado muestra un ejemplo de la respuesta del modelo.

      def addNumbers(num1, num2):
        sum = num1 + num2
        return sum
      
      # Get the input from the user
      num1 = float(input("Enter the first number: "))
      num2 = float(input("Enter the second number: "))
      
      # Call the addNumbers function
      sum = addNumbers(num1, num2)
      
      # Print the result
      print("The sum of", num1, "and", num2, "is", sum)
      

      Interactúa con el modelo a través de una interfaz de chat de Gradio (opcional)

      En esta sección, compilarás una aplicación de chat web que te permita interactuar con el modelo ajustado a instrucciones. Para simplificar, en esta sección solo se describe el enfoque de prueba con el modelo 2B-it.

      Gradio es una biblioteca de Python que tiene un wrapper ChatInterface de ChatInterface que crea interfaces de usuario para chatbots.

      Implementa la interfaz de chat

      1. En Cloud Shell, guarda el siguiente manifiesto YAML como gradio.yaml:

        apiVersion: apps/v1
        kind: Deployment
        metadata:
          name: gradio
          labels:
            app: gradio
        spec:
          replicas: 1
          selector:
            matchLabels:
              app: gradio
          template:
            metadata:
              labels:
                app: gradio
            spec:
              containers:
              - name: gradio
                image: us-docker.pkg.dev/google-samples/containers/gke/gradio-app:v1.0.4
                resources:
                  requests:
                    cpu: "250m"
                    memory: "512Mi"
                  limits:
                    cpu: "500m"
                    memory: "512Mi"
                env:
                - name: CONTEXT_PATH
                  value: "/generate"
                - name: HOST
                  value: "http://llm-service:8000"
                - name: LLM_ENGINE
                  value: "tgi"
                - name: MODEL_ID
                  value: "gemma"
                - name: USER_PROMPT
                  value: "<start_of_turn>user\nprompt<end_of_turn>\n"
                - name: SYSTEM_PROMPT
                  value: "<start_of_turn>model\nprompt<end_of_turn>\n"
                ports:
                - containerPort: 7860
        ---
        apiVersion: v1
        kind: Service
        metadata:
          name: gradio
        spec:
          selector:
            app: gradio
          ports:
          - protocol: TCP
            port: 8080
            targetPort: 7860
          type: ClusterIP
        
      2. Aplica el manifiesto

        kubectl apply -f gradio.yaml
        
      3. Espera a que la implementación esté disponible:

        kubectl wait --for=condition=Available --timeout=300s deployment/gradio
        

      Usa la interfaz de chat

      1. En Cloud Shell, ejecuta el siguiente comando:

        kubectl port-forward service/gradio 8080:8080
        

        Esto crea una redirección de puertos desde Cloud Shell al servicio de Gradio.

      2. Haz clic en el botón Ícono de vista previa en la Web Vista previa en la Web, que se encuentra en la parte superior derecha de la barra de tareas de Cloud Shell. Haga clic en Vista previa en el puerto 8080. Se abrirá una pestaña nueva en el navegador.

      3. Interactúa con Gemma con la interfaz de chat de Gradio. Agrega un mensaje y haz clic en Enviar.

      Soluciona problemas

      • Si recibes el mensaje Empty reply from server, es posible que el contenedor no haya terminado de descargar los datos del modelo. Vuelve a verificar los registros del Pod en busca del mensaje Connected, que indica que el modelo está listo para entregar.
      • Si ves Connection refused, verifica que tu redirección de puertos esté activa.

      Observa el rendimiento del modelo

      Para observar el rendimiento del modelo, puedes usar la integración del panel de TGI en Cloud Monitoring. Con este panel, puedes ver métricas de rendimiento críticas, como el rendimiento de tokens, la latencia de solicitudes y las tasas de error.

      Para usar el panel de TGI, debes habilitar Google Cloud Managed Service para Prometheus, que recopila las métricas de TGI, en tu clúster de GKE. De forma predeterminada, TGI expone las métricas en formato Prometheus, por lo que no es necesario instalar un exportador adicional.

      Luego, puedes ver las métricas con el panel de TGI. Si deseas obtener información para usar Google Cloud Managed Service para Prometheus y recopilar métricas de tu modelo, consulta la guía de observabilidad de TGI en la documentación de Cloud Monitoring.

      Realiza una limpieza

      Para evitar que se apliquen cargos a tu cuenta de Google Cloud por los recursos usados en este instructivo, borra el proyecto que contiene los recursos o conserva el proyecto y borra los recursos individuales.

      Borra los recursos implementados

      Para evitar que se apliquen cargos a tu cuenta de Google Cloud por los recursos que creaste en esta guía, ejecuta el siguiente comando:

      gcloud container clusters delete CLUSTER_NAME \
          --location=CONTROL_PLANE_LOCATION
      

      ¿Qué sigue?