Présentation de BigQuery

BigQuery est une plate-forme de données entièrement gérée et compatible avec l'IA, qui vous aide à gérer et analyser vos données grâce à des fonctionnalités intégrées telles que le machine learning, la recherche, l'analyse géospatiale et l'informatique décisionnelle. L'architecture sans serveur de BigQuery vous permet d'utiliser des langages tels que SQL et Python pour répondre à des questions cruciales pour votre organisation, sans aucune infrastructure à gérer.

BigQuery offre une manière uniforme de travailler avec des données structurées et non structurées, et est compatible avec des formats de table ouverts tels qu'Apache Iceberg, Delta et Apache Hudi. Le flux BigQuery permet l'ingestion et l'analyse de données en continu, tandis que le moteur d'analyse distribué et évolutif de BigQuery vous permet d'interroger des téraoctets en quelques secondes et des pétaoctets en quelques minutes.

BigQuery offre des fonctionnalités de gouvernance intégrées qui vous permettent de découvrir et de gérer les données, ainsi que de gérer les métadonnées et la qualité des données. Grâce à des fonctionnalités telles que la recherche sémantique et la traçabilité des données, vous pouvez trouver et valider les données pertinentes pour l'analyse. Vous pouvez partager des données et des ressources d'IA dans votre organisation tout en bénéficiant du contrôle des accès. Ces fonctionnalités sont optimisées par Dataplex Universal Catalog, une solution de gouvernance unifiée et intelligente pour les composants de données et d'IA dans Google Cloud.

L'architecture de BigQuery se compose de deux parties : une couche de stockage qui ingère, stocke et optimise les données, et une couche de calcul qui fournit des fonctionnalités d'analyse. Ces couches de calcul et de stockage fonctionnent efficacement indépendamment les unes des autres grâce au réseau de Google à l'échelle du pétaoctet, qui permet la communication nécessaire entre elles.

Les anciennes bases de données doivent généralement partager des ressources entre les opérations de lecture et d'écriture et les opérations d'analyse. Cela peut entraîner des conflits de ressources et ralentir les requêtes lorsque les données sont écrites ou lues dans l'espace de stockage. Les pools de ressources partagées peuvent être davantage sollicités lorsque des ressources sont nécessaires pour des tâches de gestion de base de données, telles que l'attribution ou la révocation d'autorisations. La séparation des couches de calcul et de stockage dans BigQuery permet à chaque couche d'allouer des ressources de manière dynamique sans affecter les performances ou la disponibilité des autres couches.

L'architecture BigQuery sépare les ressources avec un réseau pétabit.

Ce principe de séparation permet à BigQuery d'innover plus rapidement, car les améliorations de stockage et de calcul peuvent être déployées indépendamment, sans temps d'arrêt ni impact négatif sur les performances du système. Il est également essentiel de proposer un entrepôt de données sans serveur entièrement géré dans lequel l'équipe d'ingénieurs BigQuery gère les mises à jour et la maintenance. En conséquence, vous n'avez pas besoin de provisionner ou de faire évoluer manuellement les ressources, ce qui vous permet de vous concentrer sur la génération de valeur plutôt que sur les tâches traditionnelles de gestion de base de données.

Les interfaces BigQuery incluent l'interface de la console Google Cloud et l'outil de ligne de commande BigQuery. Les développeurs et les data scientists peuvent utiliser des bibliothèques clientes dans les langages de programmation familiers, y compris Python, Java, JavaScript et Go, ainsi que l'API REST et l'API RPC de BigQuery, pour transformer et gérer les données. Les pilotes ODBC et JDBC permettent d'interagir avec des applications existantes, y compris des outils et des utilitaires tiers.

En tant qu'analyste de données, ingénieur de données, administrateur d'entrepôt de données ou data scientist, BigQuery vous aide à charger, traiter et analyser des données afin d'éclairer des décisions commerciales critiques.

Premiers pas avec BigQuery

Vous pouvez commencer à explorer BigQuery en quelques minutes. Profitez du niveau d'utilisation sans frais ou du bac à sable sans frais de BigQuery pour commencer à charger et à interroger des données.

Explorer BigQuery

L'infrastructure sans serveur de BigQuery vous permet de vous concentrer sur vos données plutôt que sur la gestion des ressources. BigQuery combine un entrepôt de données cloud et de puissants outils d'analyse.

Stockage BigQuery

BigQuery stocke les données dans un format de stockage en colonnes optimisé pour les requêtes analytiques. BigQuery présente les données sous forme de tables, de lignes et de colonnes, et est entièrement compatible avec la sémantique des transactions de base de données (ACID). Le stockage BigQuery est automatiquement répliqué sur plusieurs emplacements afin de fournir une haute disponibilité.

Pour en savoir plus, consultez la page Présentation du stockage BigQuery.

Analyses BigQuery

L'analyse descriptive et l'analyse prescriptive incluent l'informatique décisionnelle, l'analyse ad hoc, les analyses géospatiales et le machine learning. Vous pouvez interroger les données stockées dans BigQuery ou exécuter des requêtes sur des données où qu'elles soient hébergées, à l'aide de tables externes ou de requêtes fédérées, y compris dans Cloud Storage, Bigtable, Spanner ou dans des feuilles de calcul Google Sheets stockées dans Google Drive.

  • Requêtes SQL standard ANSI (Compatibilité ISO/IEC 9075), y compris la gestion des jointures, des champs imbriqués et répétés, des fonctions d'analyse et d'agrégation, des requêtes à plusieurs instructions, et de diverses fonctions spatiales avec l'analyse géospatiale (systèmes d'informations géographiques).
  • Créez des vues pour partager votre analyse.
  • Compatibilité avec les outils d'informatique décisionnelle, y compris BI Engine avec Looker Studio, Looker, Google Sheets et des outils tiers tels que Tableau et Power BI.
  • BigQuery ML fournit des données analytiques de machine learning et prédictives.
  • BigQuery Studio propose des fonctionnalités telles que les notebooks Python et le contrôle des versions pour les notebooks et les requêtes enregistrées. Ces fonctionnalités facilitent la réalisation de vos workflows d'analyse de données et de machine learning (ML) dans BigQuery.
  • Interrogez des données en dehors de BigQuery avec des requêtes fédérées et des tables externes.

Pour en savoir plus, consultez la page de présentation des analyses BigQuery.

Administration de BigQuery

BigQuery offre une gestion centralisée des données et des ressources de calcul, tandis que la gestion de l'authentification et des accès (IAM) vous aide à sécuriser ces ressources avec le modèle d'accès utilisé dans Google Cloud. Les bonnes pratiques de sécuritéGoogle Cloud offrent une approche solide et flexible qui peut inclure la sécurité du périmètre ou une approche de défense en profondeur plus complexe et plus précise.

  • La section Présentation de la sécurité et de la gouvernance des données vous aide à comprendre la gouvernance des données et les contrôles dont vous pourriez avoir besoin pour sécuriser vos ressources BigQuery.
  • Les jobs sont des actions que BigQuery exécute en votre nom pour charger, exporter, interroger ou copier des données.
  • Les réservations vous permettent de basculer entre la tarification à la demande et la tarification basée sur la capacité.

Pour en savoir plus, consultez la page Présentation de l'administration de BigQuery.

Ressources BigQuery

Explorez les ressources BigQuery :

API, outils et documentations de références

Documentation de référence pour les développeurs et les analystes BigQuery :

Fonctionnalités de Gemini dans BigQuery

Gemini dans BigQuery fait partie de la suite de produits Gemini pour Google Cloud, qui fournit une assistance optimisée par l'IA pour vous aider à exploiter vos données.

Gemini dans BigQuery propose une assistance IA pour vous aider à effectuer les opérations suivantes :

Pour savoir comment configurer Gemini dans BigQuery, consultez Configurer Gemini dans BigQuery.

Rôles et ressources BigQuery

BigQuery répond aux besoins des professionnels du traitement des données ayant les rôles et responsabilités suivants.

Analyste de données

Conseils à suivre pour effectuer les tâches suivantes :

Administrateur de données

Conseils à suivre pour effectuer les tâches suivantes :

Pour en savoir plus, consultez la page Présentation de l'administration de BigQuery.

Pour découvrir les fonctionnalités d'administration des données de BigQuery directement dans la console Google Cloud , cliquez sur Visite guidée.

Visite guidée

Data scientist

Conseils d'utilisation pour l'utilisation des tâches de machine learning de BigQuery ML pour effectuer les opérations suivantes :

Développeur de données

Conseils à suivre pour effectuer les tâches suivantes :

Étapes suivantes