使用矩阵分解模型根据显式反馈创建推荐

本教程介绍了如何创建矩阵分解模型,并在 movielens1m 数据集中的客户电影评分数据上对其进行训练。然后,您可以使用矩阵分解模型为用户生成电影推荐。

使用客户提供的评分来训练模型称为使用显式反馈训练。当您使用明确反馈作为训练数据时,系统会使用交替最小二乘算法训练矩阵分解模型。

创建数据集

创建 BigQuery 数据集以存储机器学习模型。

控制台

  1. 在 Google Cloud 控制台中,前往 BigQuery 页面。

    转到 BigQuery 页面

  2. 探索器窗格中,点击您的项目名称。

  3. 点击 查看操作 > 创建数据集

  4. 创建数据集 页面上,执行以下操作:

    • 数据集 ID 部分,输入 bqml_tutorial

    • 位置类型部分,选择多区域,然后选择 US (multiple regions in United States)(美国[美国的多个区域])。

    • 保持其余默认设置不变,然后点击创建数据集

bq

如需创建新数据集,请使用带有 --location 标志的 bq mk 命令。 如需查看完整的潜在参数列表,请参阅 bq mk --dataset 命令参考文档。

  1. 创建一个名为 bqml_tutorial 的数据集,并将数据位置设置为 US,说明为 BigQuery ML tutorial dataset

    bq --location=US mk -d \
     --description "BigQuery ML tutorial dataset." \
     bqml_tutorial

    该命令使用的不是 --dataset 标志,而是 -d 快捷方式。如果省略 -d--dataset,该命令会默认创建一个数据集。

  2. 确认已创建数据集:

    bq ls

API

使用已定义的数据集资源调用 datasets.insert 方法。

{
  "datasetReference": {
     "datasetId": "bqml_tutorial"
  }
}

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭证。如需了解详情,请参阅为本地开发环境设置 ADC

import google.cloud.bigquery

bqclient = google.cloud.bigquery.Client()
bqclient.create_dataset("bqml_tutorial", exists_ok=True)

上传 Movielens 数据

movielens1m 数据上传到 BigQuery。

CLI

请按照以下步骤使用 bq 命令行工具上传 movielens1m 数据:

  1. 打开 Cloud Shell:

    激活 Cloud Shell

  2. 将评分数据上传到 ratings 表中。在命令行中,粘贴以下查询,然后点击 Enter

    curl -O 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
    unzip ml-1m.zip
    sed 's/::/,/g' ml-1m/ratings.dat > ratings.csv
    bq load --source_format=CSV bqml_tutorial.ratings ratings.csv \
      user_id:INT64,item_id:INT64,rating:FLOAT64,timestamp:TIMESTAMP
    
  3. 将电影数据上传到 movies 表中。在命令行中,粘贴以下查询,然后点击 Enter

    sed 's/::/@/g' ml-1m/movies.dat > movie_titles.csv
    bq load --source_format=CSV --field_delimiter=@ \
    bqml_tutorial.movies movie_titles.csv \
    movie_id:INT64,movie_title:STRING,genre:STRING
    

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭证。如需了解详情,请参阅为本地开发环境设置 ADC

首先,使用 bqclient = google.cloud.bigquery.Client() 创建一个 Client 对象,然后将 movielens1m 数据加载到上一步中创建的数据集中。

import io
import zipfile

import google.api_core.exceptions
import requests

try:
    # Check if you've already created the Movielens tables to avoid downloading
    # and uploading the dataset unnecessarily.
    bqclient.get_table("bqml_tutorial.ratings")
    bqclient.get_table("bqml_tutorial.movies")
except google.api_core.exceptions.NotFound:
    # Download the https://grouplens.org/datasets/movielens/1m/ dataset.
    ml1m = requests.get("http://files.grouplens.org/datasets/movielens/ml-1m.zip")
    ml1m_file = io.BytesIO(ml1m.content)
    ml1m_zip = zipfile.ZipFile(ml1m_file)

    # Upload the ratings data into the ratings table.
    with ml1m_zip.open("ml-1m/ratings.dat") as ratings_file:
        ratings_content = ratings_file.read()

    ratings_csv = io.BytesIO(ratings_content.replace(b"::", b","))
    ratings_config = google.cloud.bigquery.LoadJobConfig()
    ratings_config.source_format = "CSV"
    ratings_config.write_disposition = "WRITE_TRUNCATE"
    ratings_config.schema = [
        google.cloud.bigquery.SchemaField("user_id", "INT64"),
        google.cloud.bigquery.SchemaField("item_id", "INT64"),
        google.cloud.bigquery.SchemaField("rating", "FLOAT64"),
        google.cloud.bigquery.SchemaField("timestamp", "TIMESTAMP"),
    ]
    bqclient.load_table_from_file(
        ratings_csv, "bqml_tutorial.ratings", job_config=ratings_config
    ).result()

    # Upload the movie data into the movies table.
    with ml1m_zip.open("ml-1m/movies.dat") as movies_file:
        movies_content = movies_file.read()

    movies_csv = io.BytesIO(movies_content.replace(b"::", b"@"))
    movies_config = google.cloud.bigquery.LoadJobConfig()
    movies_config.source_format = "CSV"
    movies_config.field_delimiter = "@"
    movies_config.write_disposition = "WRITE_TRUNCATE"
    movies_config.schema = [
        google.cloud.bigquery.SchemaField("movie_id", "INT64"),
        google.cloud.bigquery.SchemaField("movie_title", "STRING"),
        google.cloud.bigquery.SchemaField("genre", "STRING"),
    ]
    bqclient.load_table_from_file(
        movies_csv, "bqml_tutorial.movies", job_config=movies_config
    ).result()

创建模型

创建矩阵分解模型,并根据 ratings 表中的数据对其进行训练。该模型经过训练,可根据客户提供的电影评分,为每个用户-商品对预测评分。

SQL

以下 CREATE MODEL 语句使用这些列来生成推荐内容:

  • user_id - 用户 ID。
  • item_id - 电影 ID。
  • rating - 用户给该商品的明确评分(从 1 到 5)。

请按照以下步骤创建模型:

  1. 在 Google Cloud 控制台中,前往 BigQuery 页面。

    转到 BigQuery

  2. 在查询编辑器中,粘贴以下查询,然后点击运行

    CREATE OR REPLACE MODEL `bqml_tutorial.mf_explicit`
    OPTIONS (
      MODEL_TYPE = 'matrix_factorization',
      FEEDBACK_TYPE = 'explicit',
      USER_COL = 'user_id',
      ITEM_COL = 'item_id',
      L2_REG = 9.83,
      NUM_FACTORS = 34)
    AS
    SELECT
    user_id,
    item_id,
    rating
    FROM `bqml_tutorial.ratings`;

    查询大约需要 10 分钟才能完成,之后 mf_explicit 模型会显示在探索器窗格中。由于查询使用 CREATE MODEL 语句来创建模型,因此您看不到查询结果。

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭证。如需了解详情,请参阅为本地开发环境设置 ADC

from bigframes.ml import decomposition
import bigframes.pandas as bpd

# Load data from BigQuery
bq_df = bpd.read_gbq(
    "bqml_tutorial.ratings", columns=("user_id", "item_id", "rating")
)

# Create the Matrix Factorization model
model = decomposition.MatrixFactorization(
    num_factors=34,
    feedback_type="explicit",
    user_col="user_id",
    item_col="item_id",
    rating_col="rating",
    l2_reg=9.83,
)
model.fit(bq_df)
model.to_gbq(
    your_model_id, replace=True  # For example: "bqml_tutorial.mf_explicit"
)

代码大约需要 10 分钟才能完成,之后 mf_explicit 模型会显示在探索器窗格中。

获取训练统计信息

(可选)您可以在Google Cloud 控制台中查看模型的训练统计信息。

机器学习算法通过使用不同的参数创建模型的多个迭代,然后选择可最大限度降低损失的模型版本来构建模型。该过程称为经验风险最小化。 借助模型的训练统计信息,您可以查看与模型的每次迭代相关联的损失。

请按照以下步骤查看模型的训练统计信息:

  1. 在 Google Cloud 控制台中,前往 BigQuery 页面。

    转到 BigQuery

  2. 在左侧窗格中,点击 Explorer

    突出显示的“探索器”窗格按钮。

    如果您没有看到左侧窗格,请点击 展开左侧窗格以打开该窗格。

  3. 探索器窗格中,展开您的项目,点击数据集,然后点击 bqml_tutorial 数据集。

  4. 点击模型标签页。

  5. 点击 mf_explicit 模型,然后点击训练标签页

  6. 查看方式部分,点击表格。结果应如下所示:

    +-----------+--------------------+--------------------+
    | Iteration | Training Data Loss | Duration (seconds) |
    +-----------+--------------------+--------------------+
    |  11       | 0.3943             | 42.59              |
    +-----------+--------------------+--------------------+
    |  10       | 0.3979             | 27.37              |
    +-----------+--------------------+--------------------+
    |   9       | 0.4038             | 40.79              |
    +-----------+--------------------+--------------------+
    |  ...      | ...                | ...                |
    +-----------+--------------------+--------------------+
    

    训练数据丢失列表示在训练模型后计算得出的损失指标。由于这是一个矩阵分解模型,因此此列显示均方误差

您还可以使用 ML.TRAINING_INFO 函数查看模型训练统计信息。

评估模型

通过比较模型返回的预测影片评分与来自训练数据的实际用户影片评分,评估模型的性能。

SQL

使用 ML.EVALUATE 函数评估模型:

  1. 在 Google Cloud 控制台中,前往 BigQuery 页面。

    转到 BigQuery

  2. 在查询编辑器中,粘贴以下查询,然后点击运行

    SELECT
    *
    FROM
    ML.EVALUATE(
      MODEL `bqml_tutorial.mf_explicit`,
      (
        SELECT
          user_id,
          item_id,
          rating
        FROM
          `bqml_tutorial.ratings`
      ));

    结果应如下所示:

    +---------------------+---------------------+------------------------+-----------------------+--------------------+--------------------+
    | mean_absolute_error | mean_squared_error  | mean_squared_log_error | median_absolute_error |      r2_score      | explained_variance |
    +---------------------+---------------------+------------------------+-----------------------+--------------------+--------------------+
    | 0.48494444327829156 | 0.39433706592870565 |   0.025437895793637522 |   0.39017059802629905 | 0.6840033369412044 | 0.6840033369412264 |
    +---------------------+---------------------+------------------------+-----------------------+--------------------+--------------------+
    

    评估结果中的一项重要指标为 R2 得分。R2 得分为统计测量结果,用于确定线性回归预测是否接近实际数据。0 值表示该模型未能说明响应数据相对于平均值的可变性。1 值表示该模型说明了响应数据相对于平均值的所有可变性。

    如需详细了解 ML.EVALUATE 函数输出,请参阅输出

您也可以在不提供输入数据的情况下调用 ML.EVALUATE。它将使用在训练期间计算得出的评估指标。

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭证。如需了解详情,请参阅为本地开发环境设置 ADC

调用 model.score() 以评估模型。

# Evaluate the model using the score() function
model.score(bq_df)
# Output:
# mean_absolute_error	mean_squared_error	mean_squared_log_error	median_absolute_error	r2_score	explained_variance
# 0.485403	                0.395052	        0.025515	            0.390573	        0.68343	        0.68343

获取部分“用户与内容”对的预测评分

获取五位用户对每部影片的预测评分。

SQL

使用 ML.RECOMMEND 函数获取预测评分:

  1. 在 Google Cloud 控制台中,前往 BigQuery 页面。

    转到 BigQuery

  2. 在查询编辑器中,粘贴以下查询,然后点击运行

    SELECT
    *
    FROM
    ML.RECOMMEND(
      MODEL `bqml_tutorial.mf_explicit`,
      (
        SELECT
          user_id
        FROM
          `bqml_tutorial.ratings`
        LIMIT 5
      ));

    结果应如下所示:

    +--------------------+---------+---------+
    | predicted_rating   | user_id | item_id |
    +--------------------+---------+---------+
    | 4.2125303962491873 | 4       | 3169    |
    +--------------------+---------+---------+
    | 4.8068920531981263 | 4       | 3739    |
    +--------------------+---------+---------+
    | 3.8742203494732403 | 4       | 3574    |
    +--------------------+---------+---------+
    | ...                | ...     | ...     |
    +--------------------+---------+---------+
    

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭证。如需了解详情,请参阅为本地开发环境设置 ADC

调用 model.predict() 以获取预测评分。

# Use predict() to get the predicted rating for each movie for 5 users
subset = bq_df[["user_id"]].head(5)
predicted = model.predict(subset)
print(predicted)
# Output:
#   predicted_rating	user_id	 item_id	rating
# 0	    4.206146	     4354	  968	     4.0
# 1	    4.853099	     3622	  3521	     5.0
# 2	    2.679067	     5543	  920	     2.0
# 3	    4.323458	     445	  3175	     5.0
# 4	    3.476911	     5535	  235	     4.0

生成推荐

使用预测评分为每位用户生成前五部推荐电影。

SQL

请按照以下步骤生成建议:

  1. 在 Google Cloud 控制台中,前往 BigQuery 页面。

    转到 BigQuery

  2. 将预测的评分写入表格。在查询编辑器中,粘贴以下查询,然后点击运行

    CREATE OR REPLACE TABLE `bqml_tutorial.recommend`
    AS
    SELECT
    *
    FROM
    ML.RECOMMEND(MODEL `bqml_tutorial.mf_explicit`);
  3. 将预测的评分与电影信息联接,并为每位用户选择前五个结果。在查询编辑器中,粘贴以下查询,然后点击运行

  SELECT
    user_id,
    ARRAY_AGG(STRUCT(movie_title, genre, predicted_rating) ORDER BY predicted_rating DESC LIMIT 5)
  FROM
    (
      SELECT
        user_id,
        item_id,
        predicted_rating,
        movie_title,
        genre
      FROM
        `bqml_tutorial.recommend`
      JOIN
        `bqml_tutorial.movies`
        ON
          item_id = movie_id
    )
  GROUP BY
    user_id;

结果应如下所示:

  +---------+-------------------------------------+------------------------+--------------------+
  | user_id | f0_movie_title                      | f0_genre               | predicted_rating   |
  +---------+-------------------------------------+------------------------+--------------------+
  | 4597    | Song of Freedom (1936)              | Drama                  | 6.8495752907364009 |
  |         | I Went Down (1997)                  | Action/Comedy/Crime    | 6.7203235758772877 |
  |         | Men With Guns (1997)                | Action/Drama           | 6.399407352232001  |
  |         | Kid, The (1921)                     | Action                 | 6.1952890198126731 |
  |         | Hype! (1996)                        | Documentary            | 6.1895766097451475 |
  +---------+-------------------------------------+------------------------+--------------------+
  | 5349    | Fandango (1985)                     | Comedy                 | 9.944574012151549  |
  |         | Breakfast of Champions (1999)       | Comedy                 | 9.55661860430112   |
  |         | Funny Bones (1995)                  | Comedy                 | 9.52778917835076   |
  |         | Paradise Road (1997)                | Drama/War              | 9.1643621767929133 |
  |         | Surviving Picasso (1996)            | Drama                  | 8.807353289233772  |
  +---------+-------------------------------------+------------------------+--------------------+
  | ...     | ...                                 | ...                    | ...                |
  +---------+-------------------------------------+------------------------+--------------------+
  

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭证。如需了解详情,请参阅为本地开发环境设置 ADC

调用 model.predict() 以获取预测评分。

# import bigframes.bigquery as bbq

# Load movies
movies = bpd.read_gbq("bqml_tutorial.movies")

# Merge the movies df with the previously created predicted df
merged_df = bpd.merge(predicted, movies, left_on="item_id", right_on="movie_id")

# Separate users and predicted data, setting the index to 'movie_id'
users = merged_df[["user_id", "movie_id"]].set_index("movie_id")

# Take the predicted data and sort it in descending order by 'predicted_rating', setting the index to 'movie_id'
sort_data = (
    merged_df[["movie_title", "genre", "predicted_rating", "movie_id"]]
    .sort_values(by="predicted_rating", ascending=False)
    .set_index("movie_id")
)

# re-merge the separated dfs by index
merged_user = sort_data.join(users, how="outer")

# group the users and set the user_id as the index
merged_user.groupby("user_id").head(5).set_index("user_id").sort_index()
print(merged_user)
# Output:
# 	            movie_title	                genre	        predicted_rating
# user_id
#   1	    Saving Private Ryan (1998)	Action|Drama|War	    5.19326
#   1	        Fargo (1996)	       Crime|Drama|Thriller	    4.996954
#   1	    Driving Miss Daisy (1989)	    Drama	            4.983671
#   1	        Ben-Hur (1959)	       Action|Adventure|Drama	4.877622
#   1	     Schindler's List (1993)	   Drama|War	        4.802336
#   2	    Saving Private Ryan (1998)	Action|Drama|War	    5.19326
#   2	        Braveheart (1995)	    Action|Drama|War	    5.174145
#   2	        Gladiator (2000)	      Action|Drama	        5.066372
#   2	        On Golden Pond (1981)	     Drama	            5.01198
#   2	    Driving Miss Daisy (1989)	     Drama	            4.983671