Générer des images avec Gemini

Les modèles Gemini suivants sont capables de générer des images en plus du texte :

  • Gemini 2.5 Flash Image, également appelé Gemini 2.5 Flash (avec Nano Banana)

  • Gemini 3 Pro Image (preview), également appelé Gemini 3 Pro (avec Nano Banana)

Pour en savoir plus sur les capacités des modèles Gemini, consultez Modèles Gemini.

Générer des images

La section suivante explique comment générer des images à l'aide de Vertex AI Studio ou de l'API.

Pour en savoir plus sur les bonnes pratiques concernant les requêtes, consultez Concevoir des requêtes multimodales.

Console

Pour générer des images avec Gemini :

  1. Ouvrez Vertex AI Studio > Créer un prompt.
  2. Cliquez sur Changer de modèle, puis sélectionnez l'un des modèles suivants dans le menu :
    • gemini-2.5-flash-image
    • gemini-3-pro-image-preview
  3. Dans le panneau Sorties, sélectionnez Image et texte dans le menu déroulant.
  4. Dans la zone de texte Écrivez un prompt, saisissez une description de l'image que vous souhaitez générer.
  5. Cliquez sur le bouton Requête ().

Gemini génère une image en fonction de votre description. Ce processus prend quelques secondes, mais peut être relativement plus lent en fonction de la capacité.

Python

Installer

pip install --upgrade google-genai

Pour en savoir plus, consultez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import os
from io import BytesIO

from google import genai
from google.genai.types import GenerateContentConfig, Modality
from PIL import Image

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=("Generate an image of the Eiffel tower with fireworks in the background."),
    config=GenerateContentConfig(
        response_modalities=[Modality.TEXT, Modality.IMAGE],
    ),
)
for part in response.candidates[0].content.parts:
    if part.text:
        print(part.text)
    elif part.inline_data:
        image = Image.open(BytesIO((part.inline_data.data)))
        # Ensure the output directory exists
        output_dir = "output_folder"
        os.makedirs(output_dir, exist_ok=True)
        image.save(os.path.join(output_dir, "example-image-eiffel-tower.png"))

Go

Découvrez comment installer ou mettre à jour le Go.

Pour en savoir plus, lisez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"
	"os"

	"google.golang.org/genai"
)

// generateMMFlashWithText demonstrates how to generate both text and image outputs.
func generateMMFlashWithText(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash-image"
	contents := []*genai.Content{
		{
			Parts: []*genai.Part{
				{Text: "Generate an image of the Eiffel tower with fireworks in the background."},
			},
			Role: genai.RoleUser,
		},
	}

	resp, err := client.Models.GenerateContent(ctx,
		modelName,
		contents,
		&genai.GenerateContentConfig{
			ResponseModalities: []string{
				string(genai.ModalityText),
				string(genai.ModalityImage),
			},
			CandidateCount: int32(1),
			SafetySettings: []*genai.SafetySetting{
				{Method: genai.HarmBlockMethodProbability},
				{Category: genai.HarmCategoryDangerousContent},
				{Threshold: genai.HarmBlockThresholdBlockMediumAndAbove},
			},
		},
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	if len(resp.Candidates) == 0 || resp.Candidates[0].Content == nil {
		return fmt.Errorf("no candidates returned")
	}
	var fileName string
	for _, part := range resp.Candidates[0].Content.Parts {
		if part.Text != "" {
			fmt.Fprintln(w, part.Text)
		} else if part.InlineData != nil {
			fileName = "example-image-eiffel-tower.png"
			if err := os.WriteFile(fileName, part.InlineData.Data, 0o644); err != nil {
				return fmt.Errorf("failed to save image: %w", err)
			}
		}
	}
	fmt.Fprintln(w, fileName)

	// Example response:
	// I will generate an image of the Eiffel Tower at night, with a vibrant display of
	// colorful fireworks exploding in the dark sky behind it.
	// ....
	return nil
}

Node.js

Installer

npm install @google/genai

Pour en savoir plus, consultez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const fs = require('fs');
const {GoogleGenAI, Modality} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';

async function generateImage(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await client.models.generateContentStream({
    model: 'gemini-2.5-flash-image',
    contents:
      'Generate an image of the Eiffel tower with fireworks in the background.',
    config: {
      responseModalities: [Modality.TEXT, Modality.IMAGE],
    },
  });

  const generatedFileNames = [];
  let imageIndex = 0;

  for await (const chunk of response) {
    const text = chunk.text;
    const data = chunk.data;
    if (text) {
      console.debug(text);
    } else if (data) {
      const outputDir = 'output-folder';
      if (!fs.existsSync(outputDir)) {
        fs.mkdirSync(outputDir, {recursive: true});
      }
      const fileName = `${outputDir}/generate_content_streaming_image_${imageIndex++}.png`;
      console.debug(`Writing response image to file: ${fileName}.`);
      try {
        fs.writeFileSync(fileName, data);
        generatedFileNames.push(fileName);
      } catch (error) {
        console.error(`Failed to write image file ${fileName}:`, error);
      }
    }
  }

  // Example response:
  //  I will generate an image of the Eiffel Tower at night, with a vibrant display of
  //  colorful fireworks exploding in the dark sky behind it. The tower will be
  //  illuminated, standing tall as the focal point of the scene, with the bursts of
  //  light from the fireworks creating a festive atmosphere.

  return generatedFileNames;
}

Java

Découvrez comment installer ou mettre à jour le Java.

Pour en savoir plus, lisez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Blob;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
import com.google.genai.types.SafetySetting;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;

public class ImageGenMmFlashWithText {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash-image";
    String outputFile = "resources/output/example-image-eiffel-tower.png";
    generateContent(modelId, outputFile);
  }

  // Generates an image with text input
  public static void generateContent(String modelId, String outputFile) throws IOException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client = Client.builder().location("global").vertexAI(true).build()) {

      GenerateContentConfig contentConfig =
          GenerateContentConfig.builder()
              .responseModalities("TEXT", "IMAGE")
              .candidateCount(1)
              .safetySettings(
                  SafetySetting.builder()
                      .method("PROBABILITY")
                      .category("HARM_CATEGORY_DANGEROUS_CONTENT")
                      .threshold("BLOCK_MEDIUM_AND_ABOVE")
                      .build())
              .build();

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              "Generate an image of the Eiffel tower with fireworks in the background.",
              contentConfig);

      // Get parts of the response
      List<Part> parts =
          response
              .candidates()
              .flatMap(candidates -> candidates.stream().findFirst())
              .flatMap(Candidate::content)
              .flatMap(Content::parts)
              .orElse(new ArrayList<>());

      // For each part print text if present, otherwise read image data if present and
      // write it to the output file
      for (Part part : parts) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().flatMap(Blob::data).isPresent()) {
          BufferedImage image =
              ImageIO.read(new ByteArrayInputStream(part.inlineData().flatMap(Blob::data).get()));
          ImageIO.write(image, "png", new File(outputFile));
        }
      }

      System.out.println("Content written to: " + outputFile);
      // Example response:
      // Here is the Eiffel Tower with fireworks in the background...
      //
      // Content written to: resources/output/example-image-eiffel-tower.png
    }
  }
}

REST

Exécutez la commande suivante dans le terminal pour créer ou écraser ce fichier dans le répertoire actuel :

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${API_ENDPOINT}:generateContent \
  -d '{
    "contents": {
      "role": "USER",
      "parts": [
        {
          "text": "Create a tutorial explaining how to make a peanut butter and jelly sandwich in three easy steps."
        }
      ]
    },
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {
        "aspectRatio": "16:9",
      },
     },
     "safetySettings": {
      "method": "PROBABILITY",
      "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
      "threshold": "BLOCK_MEDIUM_AND_ABOVE"
    },
  }' 2>/dev/null >response.json

Gemini génère une image en fonction de votre description. Ce processus prend quelques secondes, mais peut être relativement plus lent en fonction de la capacité.

Générer du texte entrecoupé d'images

Gemini 2.5 Flash Image permet de générer des images entrecoupées de réponses textuelles. Par exemple, Gemini 2.5 Flash Image vous permet de générer des images pour chaque étape d'une recette générée sans avoir à envoyer de requêtes distinctes au modèle.

Console

Pour générer des images entrecoupées de réponses textuelles :

  1. Ouvrez Vertex AI Studio > Créer un prompt.
  2. Cliquez sur Changer de modèle, puis sélectionnez l'un des modèles suivants dans le menu :
    • gemini-2.5-flash-image
    • gemini-3-pro-image-preview
  3. Dans le panneau Sorties, sélectionnez Image et texte dans le menu déroulant.
  4. Dans la zone de texte Écrivez un prompt, saisissez une description de l'image que vous souhaitez générer. Par exemple, "Crée un tutoriel expliquant comment faire un sandwich à la confiture de cacahuète en trois étapes simples. Pour chaque étape, fournis un titre avec le numéro de l'étape, une explication et génère également une image au format 1:1."
  5. Cliquez sur le bouton Requête ().

Gemini génère une réponse en fonction de votre description. Ce processus prend quelques secondes, mais peut être relativement plus lent en fonction de la capacité.

Python

Installer

pip install --upgrade google-genai

Pour en savoir plus, consultez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import GenerateContentConfig, Modality
from PIL import Image
from io import BytesIO

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=(
        "Generate an illustrated recipe for a paella."
        "Create images to go alongside the text as you generate the recipe"
    ),
    config=GenerateContentConfig(response_modalities=[Modality.TEXT, Modality.IMAGE]),
)
with open("output_folder/paella-recipe.md", "w") as fp:
    for i, part in enumerate(response.candidates[0].content.parts):
        if part.text is not None:
            fp.write(part.text)
        elif part.inline_data is not None:
            image = Image.open(BytesIO((part.inline_data.data)))
            image.save(f"output_folder/example-image-{i+1}.png")
            fp.write(f"![image](example-image-{i+1}.png)")

Java

Découvrez comment installer ou mettre à jour le Java.

Pour en savoir plus, lisez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Blob;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
import java.awt.image.BufferedImage;
import java.io.BufferedWriter;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;

public class ImageGenMmFlashTextAndImageWithText {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash-image";
    String outputFile = "resources/output/paella-recipe.md";
    generateContent(modelId, outputFile);
  }

  // Generates text and image with text input
  public static void generateContent(String modelId, String outputFile) throws IOException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client = Client.builder().location("global").vertexAI(true).build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromText("Generate an illustrated recipe for a paella."),
                  Part.fromText(
                      "Create images to go alongside the text as you generate the recipe.")),
              GenerateContentConfig.builder().responseModalities("TEXT", "IMAGE").build());

      try (BufferedWriter writer = new BufferedWriter(new FileWriter(outputFile))) {

        // Get parts of the response
        List<Part> parts =
            response
                .candidates()
                .flatMap(candidates -> candidates.stream().findFirst())
                .flatMap(Candidate::content)
                .flatMap(Content::parts)
                .orElse(new ArrayList<>());

        int index = 1;
        // For each part print text if present, otherwise read image data if present and
        // write it to the output file
        for (Part part : parts) {
          if (part.text().isPresent()) {
            writer.write(part.text().get());
          } else if (part.inlineData().flatMap(Blob::data).isPresent()) {
            BufferedImage image =
                ImageIO.read(new ByteArrayInputStream(part.inlineData().flatMap(Blob::data).get()));
            ImageIO.write(
                image, "png", new File("resources/output/example-image-" + index + ".png"));
            writer.write("![image](example-image-" + index + ".png)");
          }
          index++;
        }

        System.out.println("Content written to: " + outputFile);

        // Example response:
        // A markdown page for a Paella recipe(`paella-recipe.md`) has been generated.
        // It includes detailed steps and several images illustrating the cooking process.
        //
        // Content written to:  resources/output/paella-recipe.md
      }
    }
  }
}

Go

Découvrez comment installer ou mettre à jour le Go.

Pour en savoir plus, lisez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"
	"os"
	"path/filepath"

	"google.golang.org/genai"
)

// generateMMFlashTxtImgWithText demonstrates how to generate an illustrated recipe
// combining text and image outputs into a markdown file.
func generateMMFlashTxtImgWithText(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash-image"
	contents := []*genai.Content{
		{
			Parts: []*genai.Part{
				{Text: "Generate an illustrated recipe for a paella. " +
					"Create images to go alongside the text as you generate the recipe."},
			},
			Role: genai.RoleUser,
		},
	}

	resp, err := client.Models.GenerateContent(ctx,
		modelName,
		contents,
		&genai.GenerateContentConfig{
			ResponseModalities: []string{
				string(genai.ModalityText),
				string(genai.ModalityImage),
			},
			CandidateCount: int32(1),
		},
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	if len(resp.Candidates) == 0 || resp.Candidates[0].Content == nil {
		return fmt.Errorf("no candidates returned")
	}

	outputFolder := ""

	// Create the markdown file
	mdFile := filepath.Join(outputFolder, "paella-recipe.md")
	fp, err := os.Create(mdFile)
	if err != nil {
		return fmt.Errorf("failed to create markdown file: %w", err)
	}
	defer fp.Close()

	for i, part := range resp.Candidates[0].Content.Parts {
		if part.Text != "" {
			if _, err := fp.WriteString(part.Text); err != nil {
				return fmt.Errorf("failed to write text: %w", err)
			}
		} else if part.InlineData != nil {
			imgFile := filepath.Join(outputFolder, fmt.Sprintf("example-image-%d.png", i+1))
			if err := os.WriteFile(imgFile, part.InlineData.Data, 0644); err != nil {
				return fmt.Errorf("failed to save image: %w", err)
			}
			if _, err := fp.WriteString(fmt.Sprintf("![image](%s)", filepath.Base(imgFile))); err != nil {
				return fmt.Errorf("failed to write image reference: %w", err)
			}
		}
	}

	fmt.Fprintln(w, mdFile)

	// Example response:
	//  A markdown page for a Paella recipe (`paella-recipe.md`) has been generated.
	//  It includes detailed steps and several images illustrating the cooking process.
	return nil
}

Node.js

Installer

npm install @google/genai

Pour en savoir plus, consultez la documentation de référence du SDK.

Définissez des variables d'environnement pour utiliser le SDK Gen AI avec Vertex AI :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const fs = require('fs');
const {GoogleGenAI, Modality} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';

async function savePaellaRecipe(response) {
  const parts = response.candidates[0].content.parts;

  let mdText = '';
  const outputDir = 'output-folder';

  for (let i = 0; i < parts.length; i++) {
    const part = parts[i];

    if (part.text) {
      mdText += part.text + '\n';
    } else if (part.inlineData) {
      if (!fs.existsSync(outputDir)) {
        fs.mkdirSync(outputDir, {recursive: true});
      }
      const imageBytes = Buffer.from(part.inlineData.data, 'base64');
      const imagePath = `example-image-${i + 1}.png`;
      const saveImagePath = `${outputDir}/${imagePath}`;

      fs.writeFileSync(saveImagePath, imageBytes);
      mdText += `![image](./${imagePath})\n`;
    }
  }
  const mdFile = `${outputDir}/paella-recipe.md`;

  fs.writeFileSync(mdFile, mdText);
  console.log(`Saved recipe to: ${mdFile}`);
}

async function generateImage(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash-image',
    contents:
      'Generate an illustrated recipe for a paella. Create images to go alongside the text as you generate the recipe',
    config: {
      responseModalities: [Modality.TEXT, Modality.IMAGE],
    },
  });
  console.log(response);

  await savePaellaRecipe(response);

  return response;
}
// Example response:
//  A markdown page for a Paella recipe(`paella-recipe.md`) has been generated.
//  It includes detailed steps and several images illustrating the cooking process.

REST

Exécutez la commande suivante dans le terminal pour créer ou écraser ce fichier dans le répertoire actuel :

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${API_ENDPOINT}:generateContent \
  -d '{
    "contents": {
      "role": "USER",
      "parts": [
        {
          "text": "Create a tutorial explaining how to make a peanut butter and jelly sandwich in three easy steps. For each step, provide a title with the number of the step, an explanation, and also generate an image, generate each image in a 1:1 aspect ratio."
        }
      ]
    },
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {
        "aspectRatio": "16:9",
      },
    },
    "safetySettings": {
      "method": "PROBABILITY",
      "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
      "threshold": "BLOCK_MEDIUM_AND_ABOVE"
    },
  }' 2>/dev/null >response.json

Gemini génère une image en fonction de votre description. Ce processus prend quelques secondes, mais peut être relativement plus lent en fonction de la capacité.

Étape suivante

Pour en savoir plus sur la génération d'images Gemini, consultez les liens suivants :