Membuat gambar dengan Gemini

Model Gemini berikut mendukung kemampuan untuk membuat gambar selain teks:

  • Gemini 2.5 Flash Image, atau dikenal juga sebagai Gemini 2.5 Flash (dengan Nano Banana)

  • Gemini 3 Pro Image (pratinjau), atau dikenal juga sebagai Gemini 3 Pro (dengan Nano Banana)

Untuk mengetahui informasi selengkapnya tentang kemampuan model Gemini, lihat model Gemini.

Buat gambar

Berikut cara membuat gambar menggunakan Vertex AI Studio atau menggunakan API.

Untuk mengetahui informasi selengkapnya tentang praktik terbaik untuk perintah, lihat Mendesain perintah multimodal.

Konsol

Untuk membuat gambar dengan Gemini, lakukan hal berikut:

  1. Buka Vertex AI Studio > Create prompt.
  2. Klik Ganti model dan pilih salah satu model berikut dari menu:
    • gemini-2.5-flash-image
    • gemini-3-pro-image-preview
  3. Di panel Output, pilih Gambar dan teks dari menu drop-down.
  4. Tulis deskripsi gambar yang ingin Anda buat di area teks Tulis perintah.
  5. Klik tombol Prompt ().

Gemini akan membuat gambar berdasarkan deskripsi Anda. Proses ini memerlukan waktu beberapa detik, tetapi dapat lebih lambat bergantung pada kapasitasnya.

Python

Instal

pip install --upgrade google-genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import os
from io import BytesIO

from google import genai
from google.genai.types import GenerateContentConfig, Modality
from PIL import Image

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=("Generate an image of the Eiffel tower with fireworks in the background."),
    config=GenerateContentConfig(
        response_modalities=[Modality.TEXT, Modality.IMAGE],
    ),
)
for part in response.candidates[0].content.parts:
    if part.text:
        print(part.text)
    elif part.inline_data:
        image = Image.open(BytesIO((part.inline_data.data)))
        # Ensure the output directory exists
        output_dir = "output_folder"
        os.makedirs(output_dir, exist_ok=True)
        image.save(os.path.join(output_dir, "example-image-eiffel-tower.png"))

Go

Pelajari cara menginstal atau mengupdate Go.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"
	"os"

	"google.golang.org/genai"
)

// generateMMFlashWithText demonstrates how to generate both text and image outputs.
func generateMMFlashWithText(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash-image"
	contents := []*genai.Content{
		{
			Parts: []*genai.Part{
				{Text: "Generate an image of the Eiffel tower with fireworks in the background."},
			},
			Role: genai.RoleUser,
		},
	}

	resp, err := client.Models.GenerateContent(ctx,
		modelName,
		contents,
		&genai.GenerateContentConfig{
			ResponseModalities: []string{
				string(genai.ModalityText),
				string(genai.ModalityImage),
			},
			CandidateCount: int32(1),
			SafetySettings: []*genai.SafetySetting{
				{Method: genai.HarmBlockMethodProbability},
				{Category: genai.HarmCategoryDangerousContent},
				{Threshold: genai.HarmBlockThresholdBlockMediumAndAbove},
			},
		},
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	if len(resp.Candidates) == 0 || resp.Candidates[0].Content == nil {
		return fmt.Errorf("no candidates returned")
	}
	var fileName string
	for _, part := range resp.Candidates[0].Content.Parts {
		if part.Text != "" {
			fmt.Fprintln(w, part.Text)
		} else if part.InlineData != nil {
			fileName = "example-image-eiffel-tower.png"
			if err := os.WriteFile(fileName, part.InlineData.Data, 0o644); err != nil {
				return fmt.Errorf("failed to save image: %w", err)
			}
		}
	}
	fmt.Fprintln(w, fileName)

	// Example response:
	// I will generate an image of the Eiffel Tower at night, with a vibrant display of
	// colorful fireworks exploding in the dark sky behind it.
	// ....
	return nil
}

Node.js

Instal

npm install @google/genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const fs = require('fs');
const {GoogleGenAI, Modality} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';

async function generateImage(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await client.models.generateContentStream({
    model: 'gemini-2.5-flash-image',
    contents:
      'Generate an image of the Eiffel tower with fireworks in the background.',
    config: {
      responseModalities: [Modality.TEXT, Modality.IMAGE],
    },
  });

  const generatedFileNames = [];
  let imageIndex = 0;

  for await (const chunk of response) {
    const text = chunk.text;
    const data = chunk.data;
    if (text) {
      console.debug(text);
    } else if (data) {
      const outputDir = 'output-folder';
      if (!fs.existsSync(outputDir)) {
        fs.mkdirSync(outputDir, {recursive: true});
      }
      const fileName = `${outputDir}/generate_content_streaming_image_${imageIndex++}.png`;
      console.debug(`Writing response image to file: ${fileName}.`);
      try {
        fs.writeFileSync(fileName, data);
        generatedFileNames.push(fileName);
      } catch (error) {
        console.error(`Failed to write image file ${fileName}:`, error);
      }
    }
  }

  // Example response:
  //  I will generate an image of the Eiffel Tower at night, with a vibrant display of
  //  colorful fireworks exploding in the dark sky behind it. The tower will be
  //  illuminated, standing tall as the focal point of the scene, with the bursts of
  //  light from the fireworks creating a festive atmosphere.

  return generatedFileNames;
}

Java

Pelajari cara menginstal atau mengupdate Java.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Blob;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
import com.google.genai.types.SafetySetting;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;

public class ImageGenMmFlashWithText {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash-image";
    String outputFile = "resources/output/example-image-eiffel-tower.png";
    generateContent(modelId, outputFile);
  }

  // Generates an image with text input
  public static void generateContent(String modelId, String outputFile) throws IOException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client = Client.builder().location("global").vertexAI(true).build()) {

      GenerateContentConfig contentConfig =
          GenerateContentConfig.builder()
              .responseModalities("TEXT", "IMAGE")
              .candidateCount(1)
              .safetySettings(
                  SafetySetting.builder()
                      .method("PROBABILITY")
                      .category("HARM_CATEGORY_DANGEROUS_CONTENT")
                      .threshold("BLOCK_MEDIUM_AND_ABOVE")
                      .build())
              .build();

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              "Generate an image of the Eiffel tower with fireworks in the background.",
              contentConfig);

      // Get parts of the response
      List<Part> parts =
          response
              .candidates()
              .flatMap(candidates -> candidates.stream().findFirst())
              .flatMap(Candidate::content)
              .flatMap(Content::parts)
              .orElse(new ArrayList<>());

      // For each part print text if present, otherwise read image data if present and
      // write it to the output file
      for (Part part : parts) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().flatMap(Blob::data).isPresent()) {
          BufferedImage image =
              ImageIO.read(new ByteArrayInputStream(part.inlineData().flatMap(Blob::data).get()));
          ImageIO.write(image, "png", new File(outputFile));
        }
      }

      System.out.println("Content written to: " + outputFile);
      // Example response:
      // Here is the Eiffel Tower with fireworks in the background...
      //
      // Content written to: resources/output/example-image-eiffel-tower.png
    }
  }
}

REST

Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${API_ENDPOINT}:generateContent \
  -d '{
    "contents": {
      "role": "USER",
      "parts": [
        {
          "text": "Create a tutorial explaining how to make a peanut butter and jelly sandwich in three easy steps."
        }
      ]
    },
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {
        "aspectRatio": "16:9",
      },
     },
     "safetySettings": {
      "method": "PROBABILITY",
      "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
      "threshold": "BLOCK_MEDIUM_AND_ABOVE"
    },
  }' 2>/dev/null >response.json

Gemini akan membuat gambar berdasarkan deskripsi Anda. Proses ini memerlukan waktu beberapa detik, tetapi dapat lebih lambat bergantung pada kapasitasnya.

Membuat kombinasi gambar dan teks

Gemini 2.5 Flash Image mendukung pembuatan respons gambar yang diselingi dengan teks. Misalnya, Gemini 2.5 Flash Image memungkinkan Anda membuat gambar untuk setiap langkah resep yang dibuat tanpa harus membuat permintaan terpisah ke model.

Konsol

Untuk membuat gambar kombinasi dengan respons teks, lakukan langkah berikut:

  1. Buka Vertex AI Studio > Create prompt.
  2. Klik Ganti model dan pilih salah satu model berikut dari menu:
    • gemini-2.5-flash-image
    • gemini-3-pro-image-preview
  3. Di panel Output, pilih Gambar dan teks dari menu drop-down.
  4. Tulis deskripsi gambar yang ingin Anda buat di area teks Tulis perintah. Misalnya, "Buat tutorial yang menjelaskan cara membuat sandwich selai kacang dan jeli dalam tiga langkah mudah. Untuk setiap langkah, berikan judul dengan nomor langkah, penjelasan, dan buat juga gambar, buat setiap gambar dalam rasio aspek 1:1."
  5. Klik tombol Prompt ().

Gemini akan membuat respons berdasarkan deskripsi Anda. Proses ini memerlukan waktu beberapa detik, tetapi dapat lebih lambat bergantung pada kapasitasnya.

Python

Instal

pip install --upgrade google-genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import GenerateContentConfig, Modality
from PIL import Image
from io import BytesIO

client = genai.Client()

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=(
        "Generate an illustrated recipe for a paella."
        "Create images to go alongside the text as you generate the recipe"
    ),
    config=GenerateContentConfig(response_modalities=[Modality.TEXT, Modality.IMAGE]),
)
with open("output_folder/paella-recipe.md", "w") as fp:
    for i, part in enumerate(response.candidates[0].content.parts):
        if part.text is not None:
            fp.write(part.text)
        elif part.inline_data is not None:
            image = Image.open(BytesIO((part.inline_data.data)))
            image.save(f"output_folder/example-image-{i+1}.png")
            fp.write(f"![image](example-image-{i+1}.png)")

Java

Pelajari cara menginstal atau mengupdate Java.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Blob;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
import java.awt.image.BufferedImage;
import java.io.BufferedWriter;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;

public class ImageGenMmFlashTextAndImageWithText {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash-image";
    String outputFile = "resources/output/paella-recipe.md";
    generateContent(modelId, outputFile);
  }

  // Generates text and image with text input
  public static void generateContent(String modelId, String outputFile) throws IOException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client = Client.builder().location("global").vertexAI(true).build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromText("Generate an illustrated recipe for a paella."),
                  Part.fromText(
                      "Create images to go alongside the text as you generate the recipe.")),
              GenerateContentConfig.builder().responseModalities("TEXT", "IMAGE").build());

      try (BufferedWriter writer = new BufferedWriter(new FileWriter(outputFile))) {

        // Get parts of the response
        List<Part> parts =
            response
                .candidates()
                .flatMap(candidates -> candidates.stream().findFirst())
                .flatMap(Candidate::content)
                .flatMap(Content::parts)
                .orElse(new ArrayList<>());

        int index = 1;
        // For each part print text if present, otherwise read image data if present and
        // write it to the output file
        for (Part part : parts) {
          if (part.text().isPresent()) {
            writer.write(part.text().get());
          } else if (part.inlineData().flatMap(Blob::data).isPresent()) {
            BufferedImage image =
                ImageIO.read(new ByteArrayInputStream(part.inlineData().flatMap(Blob::data).get()));
            ImageIO.write(
                image, "png", new File("resources/output/example-image-" + index + ".png"));
            writer.write("![image](example-image-" + index + ".png)");
          }
          index++;
        }

        System.out.println("Content written to: " + outputFile);

        // Example response:
        // A markdown page for a Paella recipe(`paella-recipe.md`) has been generated.
        // It includes detailed steps and several images illustrating the cooking process.
        //
        // Content written to:  resources/output/paella-recipe.md
      }
    }
  }
}

Go

Pelajari cara menginstal atau mengupdate Go.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"
	"os"
	"path/filepath"

	"google.golang.org/genai"
)

// generateMMFlashTxtImgWithText demonstrates how to generate an illustrated recipe
// combining text and image outputs into a markdown file.
func generateMMFlashTxtImgWithText(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash-image"
	contents := []*genai.Content{
		{
			Parts: []*genai.Part{
				{Text: "Generate an illustrated recipe for a paella. " +
					"Create images to go alongside the text as you generate the recipe."},
			},
			Role: genai.RoleUser,
		},
	}

	resp, err := client.Models.GenerateContent(ctx,
		modelName,
		contents,
		&genai.GenerateContentConfig{
			ResponseModalities: []string{
				string(genai.ModalityText),
				string(genai.ModalityImage),
			},
			CandidateCount: int32(1),
		},
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	if len(resp.Candidates) == 0 || resp.Candidates[0].Content == nil {
		return fmt.Errorf("no candidates returned")
	}

	outputFolder := ""

	// Create the markdown file
	mdFile := filepath.Join(outputFolder, "paella-recipe.md")
	fp, err := os.Create(mdFile)
	if err != nil {
		return fmt.Errorf("failed to create markdown file: %w", err)
	}
	defer fp.Close()

	for i, part := range resp.Candidates[0].Content.Parts {
		if part.Text != "" {
			if _, err := fp.WriteString(part.Text); err != nil {
				return fmt.Errorf("failed to write text: %w", err)
			}
		} else if part.InlineData != nil {
			imgFile := filepath.Join(outputFolder, fmt.Sprintf("example-image-%d.png", i+1))
			if err := os.WriteFile(imgFile, part.InlineData.Data, 0644); err != nil {
				return fmt.Errorf("failed to save image: %w", err)
			}
			if _, err := fp.WriteString(fmt.Sprintf("![image](%s)", filepath.Base(imgFile))); err != nil {
				return fmt.Errorf("failed to write image reference: %w", err)
			}
		}
	}

	fmt.Fprintln(w, mdFile)

	// Example response:
	//  A markdown page for a Paella recipe (`paella-recipe.md`) has been generated.
	//  It includes detailed steps and several images illustrating the cooking process.
	return nil
}

Node.js

Instal

npm install @google/genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const fs = require('fs');
const {GoogleGenAI, Modality} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';

async function savePaellaRecipe(response) {
  const parts = response.candidates[0].content.parts;

  let mdText = '';
  const outputDir = 'output-folder';

  for (let i = 0; i < parts.length; i++) {
    const part = parts[i];

    if (part.text) {
      mdText += part.text + '\n';
    } else if (part.inlineData) {
      if (!fs.existsSync(outputDir)) {
        fs.mkdirSync(outputDir, {recursive: true});
      }
      const imageBytes = Buffer.from(part.inlineData.data, 'base64');
      const imagePath = `example-image-${i + 1}.png`;
      const saveImagePath = `${outputDir}/${imagePath}`;

      fs.writeFileSync(saveImagePath, imageBytes);
      mdText += `![image](./${imagePath})\n`;
    }
  }
  const mdFile = `${outputDir}/paella-recipe.md`;

  fs.writeFileSync(mdFile, mdText);
  console.log(`Saved recipe to: ${mdFile}`);
}

async function generateImage(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash-image',
    contents:
      'Generate an illustrated recipe for a paella. Create images to go alongside the text as you generate the recipe',
    config: {
      responseModalities: [Modality.TEXT, Modality.IMAGE],
    },
  });
  console.log(response);

  await savePaellaRecipe(response);

  return response;
}
// Example response:
//  A markdown page for a Paella recipe(`paella-recipe.md`) has been generated.
//  It includes detailed steps and several images illustrating the cooking process.

REST

Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${API_ENDPOINT}:generateContent \
  -d '{
    "contents": {
      "role": "USER",
      "parts": [
        {
          "text": "Create a tutorial explaining how to make a peanut butter and jelly sandwich in three easy steps. For each step, provide a title with the number of the step, an explanation, and also generate an image, generate each image in a 1:1 aspect ratio."
        }
      ]
    },
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {
        "aspectRatio": "16:9",
      },
    },
    "safetySettings": {
      "method": "PROBABILITY",
      "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
      "threshold": "BLOCK_MEDIUM_AND_ABOVE"
    },
  }' 2>/dev/null >response.json

Gemini akan membuat gambar berdasarkan deskripsi Anda. Proses ini memerlukan waktu beberapa detik, tetapi dapat lebih lambat bergantung pada kapasitasnya.

Apa langkah selanjutnya?

Lihat link berikut untuk mengetahui informasi selengkapnya tentang pembuatan gambar Gemini: