Edit images with Gemini

Gemini 2.5 Flash Image (gemini-2.5-flash-image) supports improved editing of images and multi-turn editing, and contains updated safety filters that provide a more flexible and less restrictive user experience.

For more information about model capabilities, see Gemini models.

Edit an image

Console

To edit images, do the following:

  1. Open Vertex AI Studio > Create prompt.
  2. Click Switch model and select one of the following models from the menu:
    • gemini-2.5-flash-image
    • gemini-3-pro-image-preview
  3. In the Outputs panel, select Image and text from the drop-down menu.
  4. Click Insert media () and select a source from the menu, then follow the dialog's instructions.
  5. Write what edits you want to make to the image in the Write a prompt text area.
  6. Click the Prompt () button.

Gemini generates an edited version of the provided image based on your description. This process takes a few seconds, but can be comparatively slower depending on capacity.

Python

Install

pip install --upgrade google-genai

To learn more, see the SDK reference documentation.

Set environment variables to use the Gen AI SDK with Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import GenerateContentConfig, Modality
from PIL import Image
from io import BytesIO

client = genai.Client()

# Using an image of Eiffel tower, with fireworks in the background.
image = Image.open("test_resources/example-image-eiffel-tower.png")

response = client.models.generate_content(
    model="gemini-3-pro-image-preview",
    contents=[image, "Edit this image to make it look like a cartoon."],
    config=GenerateContentConfig(response_modalities=[Modality.TEXT, Modality.IMAGE]),
)
for part in response.candidates[0].content.parts:
    if part.text:
        print(part.text)
    elif part.inline_data:
        image = Image.open(BytesIO((part.inline_data.data)))
        image.save("output_folder/bw-example-image.png")

Java

Learn how to install or update the Java.

To learn more, see the SDK reference documentation.

Set environment variables to use the Gen AI SDK with Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Blob;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;

public class ImageGenMmFlashEditImageWithTextAndImage {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash-image";
    String outputFile = "resources/output/bw-example-image.png";
    generateContent(modelId, outputFile);
  }

  // Edits an image with image and text input
  public static void generateContent(String modelId, String outputFile) throws IOException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client = Client.builder().location("global").vertexAI(true).build()) {

      byte[] localImageBytes =
          Files.readAllBytes(Paths.get("resources/example-image-eiffel-tower.png"));

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromBytes(localImageBytes, "image/png"),
                  Part.fromText("Edit this image to make it look like a cartoon.")),
              GenerateContentConfig.builder().responseModalities("TEXT", "IMAGE").build());

      // Get parts of the response
      List<Part> parts =
          response
              .candidates()
              .flatMap(candidates -> candidates.stream().findFirst())
              .flatMap(Candidate::content)
              .flatMap(Content::parts)
              .orElse(new ArrayList<>());

      // For each part print text if present, otherwise read image data if present and
      // write it to the output file
      for (Part part : parts) {
        if (part.text().isPresent()) {
          System.out.println(part.text().get());
        } else if (part.inlineData().flatMap(Blob::data).isPresent()) {
          BufferedImage image =
              ImageIO.read(new ByteArrayInputStream(part.inlineData().flatMap(Blob::data).get()));
          ImageIO.write(image, "png", new File(outputFile));
        }
      }

      System.out.println("Content written to: " + outputFile);

      // Example response:
      // No problem! Here's the image in a cartoon style...
      //
      // Content written to: resources/output/bw-example-image.png
    }
  }
}

Go

Learn how to install or update the Go.

To learn more, see the SDK reference documentation.

Set environment variables to use the Gen AI SDK with Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"
	"os"

	"google.golang.org/genai"
)

// generateImageMMFlashEditWithTextImg demonstrates editing an image with text and image inputs.
func generateImageMMFlashEditWithTextImg(w io.Writer) error {
	// TODO(developer): Update below lines
	outputFile := "bw-example-image.png"
	inputFile := "example-image-eiffel-tower.png"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	image, err := os.ReadFile(inputFile)
	if err != nil {
		return fmt.Errorf("failed to read image: %w", err)
	}

	modelName := "gemini-2.5-flash-image"
	prompt := "Edit this image to make it look like a cartoon."
	contents := []*genai.Content{
		{
			Role: "user",
			Parts: []*genai.Part{
				{Text: prompt},
				{InlineData: &genai.Blob{
					MIMEType: "image/png",
					Data:     image,
				}},
			},
		},
	}
	resp, err := client.Models.GenerateContent(ctx,
		modelName,
		contents,
		&genai.GenerateContentConfig{
			ResponseModalities: []string{
				string(genai.ModalityText),
				string(genai.ModalityImage),
			},
		},
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	if len(resp.Candidates) == 0 || resp.Candidates[0].Content == nil {
		return fmt.Errorf("no content was generated")
	}

	for _, part := range resp.Candidates[0].Content.Parts {
		if part.Text != "" {
			fmt.Fprintln(w, part.Text)
		} else if part.InlineData != nil {
			if len(part.InlineData.Data) > 0 {
				if err := os.WriteFile(outputFile, part.InlineData.Data, 0644); err != nil {
					return fmt.Errorf("failed to save image: %w", err)
				}
				fmt.Fprintln(w, outputFile)
			}
		}
	}

	// Example response:
	// Here's the image of the Eiffel Tower and fireworks, cartoonized for you!
	// Cartoon-style edit:
	//  - Simplified the Eiffel Tower with bolder lines and slightly exaggerated proportions.
	//  - Brightened and saturated the colors of the sky, fireworks, and foliage for a more vibrant, cartoonish look.
	//  ....
	return nil
}

Node.js

Install

npm install @google/genai

To learn more, see the SDK reference documentation.

Set environment variables to use the Gen AI SDK with Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const fs = require('fs');
const {GoogleGenAI, Modality} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';

const FILE_NAME = 'test-data/example-image-eiffel-tower.png';

async function generateImage(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const imageBytes = fs.readFileSync(FILE_NAME);

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash-image',
    contents: [
      {
        role: 'user',
        parts: [
          {
            inlineData: {
              mimeType: 'image/png',
              data: imageBytes.toString('base64'),
            },
          },
          {
            text: 'Edit this image to make it look like a cartoon',
          },
        ],
      },
    ],
    config: {
      responseModalities: [Modality.TEXT, Modality.IMAGE],
    },
  });

  for (const part of response.candidates[0].content.parts) {
    if (part.text) {
      console.log(`${part.text}`);
    } else if (part.inlineData) {
      const outputDir = 'output-folder';
      if (!fs.existsSync(outputDir)) {
        fs.mkdirSync(outputDir, {recursive: true});
      }
      const imageBytes = Buffer.from(part.inlineData.data, 'base64');
      const filename = `${outputDir}/bw-example-image.png`;
      fs.writeFileSync(filename, imageBytes);
    }
  }

  // Example response:
  // Okay, I will edit this image to give it a cartoonish style, with bolder outlines, simplified details, and more vibrant colors.
  return response;
}

REST

Run the following command in the terminal to create or overwrite this file in the current directory:

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${API_ENDPOINT}:generateContent \
  -d '{
    "contents": {
      "role": "USER",
      "parts": [
        {"fileData": {
          "mimeType": "image/jpg",
          "fileUri": "FILE_NAME"
          }
        },
        {"text": "Convert this photo to black and white, in a cartoonish style."},
      ]

    },
    "generationConfig": {
      "responseModalities": ["TEXT", "IMAGE"],
      "imageConfig": {
        "aspectRatio": "16:9",
      },
    },
    "safetySettings": {
      "method": "PROBABILITY",
      "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
      "threshold": "BLOCK_MEDIUM_AND_ABOVE"
    },
  }' 2>/dev/null >response.json

Gemini 2.5 Flash Image supports the following aspect ratios: 1:1, 3:2, 2:3, 3:4, 4:3, 4:5, 5:4, 9:16, 16:9, and 21:9.

Gemini generates an image based on your description. This process takes a few seconds, but can be comparatively slower depending on capacity.

Multi-turn image editing

Gemini 2.5 Flash Image and Gemini 3 Pro Image support improved multi-turn editing, which lets you respond to the model with changes after receiving an edited image response.

We recommended limiting the entire request file size to 50MB maximum.

To test out multi-turn image editing, see the following notebooks:

To see code samples related to multi-turn image creation and editing using Gemini 3 Pro Image, see Example of multi-turn image editing using thought signatures.

What's next?

See the following links for more information about Gemini image generation: