設定 OpenAPI 工具以存取 Datastore

OpenAPI 工具可讓 AI 教練根據對話情境,動態從遠端 API 擷取資料。

事前準備

如果現有 API 發生問題,請採用下列彈性做法:

  1. 建立 Cloud Run 函式,做為現有 API 的包裝函式。Cloud Run 函式會填入其他必要參數,並對 API 回應執行後續處理。
  2. 建立 OpenAPI 工具,呼叫 Cloud Run 函式。

Datastore API 可能需要額外的輸入參數 (例如設定搜尋結果模式),但 Cloud Run 函式只需要一個參數 (查詢),AI 輔導員可以從對話內容中擷取該參數。在回應處理方面,Cloud Run 函式只會傳回最符合的結果,而不是所有結果。

請按照下列步驟存取 Datastore。

  1. 按照「資料儲存區」一文中的步驟建立資料儲存區。
  2. 按照步驟建立搜尋應用程式
  3. 使用 API 檢查 Datastore 和搜尋應用程式,確認解決方案類型、搜尋層級,以及是否已啟用分塊。

執行下列指令來擷取分塊。

gcurl -sX GET \
"https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/dataStores/${data_store_id}/documentProcessingConfig"

以下範例顯示已啟用分塊。

{
  "name": "projects/${project_id}/locations/global/collections/default_collection/dataStores/${data_store_id}/documentProcessingConfig",
  "chunkingConfig": {
    "layoutBasedChunkingConfig": {
      "chunkSize": 500,
      "includeAncestorHeadings": true
    }
  },
  "defaultParsingConfig": {
    "digitalParsingConfig": {}
  }
}

執行下列指令,擷取解決方案類型和搜尋層級。

gcurl -X GET \
"https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/engines/${data_store_id}"

以下範例顯示解決方案類型和搜尋層級已通過驗證。

{
  "name": "projects/${project_id}/locations/global/collections/default_collection/engines/${data_store_id}",
  "displayName": "iphone_",
  "dataStoreIds": [
    "${data_store_id}"
  ],
  "solutionType": "SOLUTION_TYPE_SEARCH",
  "searchEngineConfig": {
    "searchTier": "SEARCH_TIER_ENTERPRISE"
  },
  "commonConfig": {
    "companyName": "Google"
  },
  "industryVertical": "GENERIC"
}

步驟 2:建立 Cloud Run 函式來呼叫 Datastore

如要進行驗證,請將 Cloud Run 函式設為需要身分識別權杖。Cloud Run 函式可將複雜的 API 包裝成基本 API。這些動作包括:

  1. 在要求中填入其他欄位。
  2. 呼叫 Datastore API 執行搜尋。
  3. 處理 API 回應並傳回最相關的結果。

建立 Cloud Run 函式後,請建立 OpenAPI 工具來叫用 Cloud Run 函式。

在下列範例中,Cloud Run functions 會轉換 Datastore API,執行搜尋並提供搜尋結果清單。

import os
import requests
import google.auth
import google.auth.transport.requests
import functions_framework

@functions_framework.http
def call_vertex_search(request):
  """
  HTTP Cloud Function to invoke a Vertex AI Search endpoint.
  """

  # --- Configuration - Tailor to your Vertex AI Search specifics ---
  project_id = ${project_id}
  engine_id = "${data_store_id}"

  # Establish the Vertex AI Search endpoint URL
  endpoint = f"https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/engines/{engine_id}/servingConfigs/default_chat:search"

  # --- Acquire Authentication Token ---
  try:
    credentials, project = google.auth.default()
    auth_req = google.auth.transport.requests.Request()
    credentials.refresh(auth_req)
    token = credentials.token
  except Exception as e:
    print(f"Authentication token retrieval error: {e}")
    return f"Authentication token retrieval error: {e}", 500

  headers = {
      "Authorization": f"Bearer {token}",
      "Content-Type": "application/json",
  }

  # --- Formulate Search Query ---
  # Extract the query from the request; otherwise, employ a default.
  request_json = request.get_json(silent=True)
  query = "what is the price of iphone 13?"  # Default query
  if request_json and 'query' in request_json:
    query = request_json['query']

  payload = {
      "query": query,
      "page_size": 5,
      "content_search_spec": {
          "search_result_mode": "CHUNKS"
      }
      # Additional search parameters, such as filters or boost_spec, can be appended here.
      # "filter": "some_attribute:ANY(\"value\")",
  }

  # --- Execute Vertex AI Search API Call ---
  try:
    response = requests.post(endpoint, headers=headers, json=payload)
    response.raise_for_status()  # Trigger an exception for unfavorable status codes.

    search_results = response.json()
    print(f"Search results: {search_results}")

    extracted_data = search_results["results"][0]["chunk"]["content"]

    if extracted_data is not None:
      print(f"Extracted data: {extracted_data}")
      return {"content": extracted_data}, 200
    else:
      print("Failed to extract search results from the response.")
      return "Failed to extract search results from the response", 404

  except requests.exceptions.RequestException as e:
    print(f"Vertex AI Search invocation error: {e}")
    if e.response is not None:
      print(f"Error details: {e.response.text}")
      return f"Vertex AI Search invocation error: {e.response.text}", e.response.status_code
    return f"Vertex AI Search invocation error: {e}", 500
  except Exception as e:
    print(f"An unanticipated error transpired: {e}")
    return f"An unanticipated error transpired: {e}", 500

使用 Shell 測試 Cloud Run functions。如以下範例所示,試著傳送「iphone 13 的價格是多少」這類查詢。

export CLOUDSDK_CORE_PROJECT=${project_id}
curl -H "Authorization: Bearer "$(gcloud auth print-identity-token) -H "X-Goog-User-Project: ${CLOUDSDK_CORE_PROJECT}" -H "Content-Type: application/json; charset=utf-8" -X GET "https://${CLOUD_FUNCTION_ENDPOINT}/?query=what%20is%20the%20price%20of%20iphone%2013"

您應該會收到類似以下的回覆:

{"content":"Table of contents\niPhone price history iPhone 4S (2011)\niPhone 4S original starting MSRP: $199\nInflation-adjusted iPhone 4S price: $280\niPhone 5 (2012)\niPhone 5 Original starting MSRP: $199\nInflation-adjusted iPhone 5 price: $276\niPhone 5S/5C (2013) iPhone 5S original starting MSRP: $199\niPhone 5C original starting MSRP: $99\nInflation-adjusted iPhone 5S price: $270\nInflation-adjusted iPhone 5C price: $134\niPhone 6/6 Plus (2014) Table of contents\niPhone price history iPhone 6 original starting MSRP: $199\niPhone 6 Plus original starting MSRP: $299\nInflation-adjusted iPhone 6 price: $266\nInflation-adjusted iPhone 6 Plus price: $398\niPhone 6S/6S Plus (2015)\niPhone 6S original starting MSRP: $199\niPhone 6S Plus original starting MSRP: $299\nInflation-adjusted iPhone 6S price: $265\nInflation-adjusted iPhone 6S Plus price: $397\niPhone 7/7 Plus (2016) Table of contents\niPhone price history iPhone 7 original starting MSRP: $649\niPhone 7 Plus original starting MSRP: $769\nInflation-adjusted iPhone 7 price: $854\nInflation-adjusted iPhone 7 Plus price: $1,011\niPhone 8/8 Plus (2017)\niPhone 8 original starting MSRP: $699\niPhone 8 Plus original starting MSRP: $799\nInflation-adjusted iPhone 8 price: $900\nInflation-adjusted iPhone 8 Plus price: $1,029\niPhone X (2017)\niPhone X original starting MSRP: $999\nInflation-adjusted iPhone X Plus price: $1,287\niPhone XR (2018)\niPhone XR original starting MSRP: $749\nInflation-adjusted iPhone XR Plus price: $942\niPhone XS/S Max (2018) Table of contents\niPhone price history iPhone XS original starting MSRP: $999\niPhone XS Max original starting MSRP: $1,099\nInflation-adjusted iPhone XS price: $1,254\nInflation-adjusted iPhone XS Plus price: $1,380\niPhone 11/Pro/Pro Max (2019)\niPhone 11 original starting MSRP: $699\niPhone 11 Pro original starting MSRP: $999\niPhone 11 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 11 price: $863\nInflation-adjusted iPhone 11 Pro price: $1,232\nInflation-adjusted iPhone 11 Pro Max price: $1,355\niPhone 12/Mini/Pro/Pro Max (2020)\niPhone 12 original starting MSRP: $799 Table of contents\niPhone price history Login iPhone 12 Mini original starting MSRP: $699\niPhone 12 Pro original starting MSRP: $999\niPhone 12 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 12 price: $976\nInflation-adjusted iPhone 12 Mini price: $853\nInflation-adjusted iPhone 12 Pro price: $1,218\nInflation-adjusted iPhone 12 Pro Max price: $1,340 iPhone 13/Mini/Pro/Pro Max (2021)\niPhone 13 original starting MSRP: $799\niPhone 13 Mini original starting MSRP: $699\niPhone 13 Pro original starting MSRP: $999\niPhone 13 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 13 price: $931\nInflation-adjusted iPhone 13 Mini price: $814\nInflation-adjusted iPhone 13 Pro price: $1,163\nInflation-adjusted iPhone 13 Pro Max price: $1,279\niPhone 14/Plus/Pro/Pro Max (2022) Table of contents\niPhone price history Robert Triggs / Android Authority"}

步驟 3:建立 OpenAPI 工具

按照「OpenAPI 和 Integration Connectors 工具」中的步驟,建立 OpenAPI 工具。

以下範例說明 OpenAPI 工具如何與 Cloud Run 函式提供的新 API 互動。

openapi: 3.0.0
info:
  title: iphone_price_tool
  description: An API to search document about iPhone prices.
  version: 1.0.0
servers:
  - url: https://${CLOUD_FUNCTION_ENDPOINT}
paths:
  /:
    get:
      summary: Search information about iphone prices
      operationId: search
      parameters:
        - in: query
          name: query
          schema:
            type: string
          required: true
          description: The user's question about iphone price
      responses:
        '200':
          description: Retrieved information about iphone price
          content:
            application/json:
              schema:
                type: object
                properties:
                  content:
                    type: string
                    description: Information about iphone price
        '400':
          description: Bad request, query parameter is missing.
          content:
            text/plain:
              schema:
                type: string
                example: "Please provide a 'query' as a URL parameter for POST requests (e.g., ?query=your_question)."
        '500':
          description: Internal server error.
          content:
            text/plain:
              schema:
                type: string
                example: "Error querying: An unexpected error occurred."

步驟 4:建立產生器

按照「OpenAPI 工具」中的步驟建立 AI 教練生成器。使用 AI 教練生成器內容建構 LLM 提示。