Mit Veo Videos aus Bildern erstellen

Mit Veo, einem generativen KI-Modell zur Videogenerierung , können Sie Videos aus Bildern erstellen.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Go-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Go API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"fmt"
	"io"
	"time"

	"google.golang.org/genai"
)

// generateVideoFromImage shows how to gen video from img.
func generateVideoFromImage(w io.Writer, outputGCSURI string) error {
	//outputGCSURI = "gs://your-bucket/your-prefix"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	image := &genai.Image{
		GCSURI:   "gs://cloud-samples-data/generative-ai/image/flowers.png",
		MIMEType: "image/png",
	}

	config := &genai.GenerateVideosConfig{
		AspectRatio:  "16:9",
		OutputGCSURI: outputGCSURI,
	}

	modelName := "veo-3.0-generate-preview"
	prompt := "Extreme close-up of a cluster of vibrant wildflowers swaying gently in a sun-drenched meadow."
	operation, err := client.Models.GenerateVideos(ctx, modelName, prompt, image, config)
	if err != nil {
		return fmt.Errorf("failed to start video generation: %w", err)
	}

	// Polling until the operation is done
	for !operation.Done {
		time.Sleep(15 * time.Second)
		operation, err = client.Operations.GetVideosOperation(ctx, operation, nil)
		if err != nil {
			return fmt.Errorf("failed to get operation status: %w", err)
		}
	}

	if operation.Response != nil && len(operation.Response.GeneratedVideos) > 0 {
		videoURI := operation.Response.GeneratedVideos[0].Video.URI
		fmt.Fprintln(w, videoURI)
		return nil
	}

	// Example response:
	// gs://your-bucket/your-prefix/videoURI

	return fmt.Errorf("video generation failed or returned no results")
}

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.genai.Client;
import com.google.genai.types.GenerateVideosConfig;
import com.google.genai.types.GenerateVideosOperation;
import com.google.genai.types.GenerateVideosResponse;
import com.google.genai.types.GeneratedVideo;
import com.google.genai.types.GetOperationConfig;
import com.google.genai.types.Image;
import com.google.genai.types.Video;
import java.util.concurrent.TimeUnit;

public class VideoGenWithImg {

  public static void main(String[] args) throws InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "veo-3.0-generate-preview";
    String outputGcsUri = "gs://your-bucket/your-prefix";
    generateContent(modelId, outputGcsUri);
  }

  // Generates a video with an image and a text prompt.
  public static String generateContent(String modelId, String outputGcsUri)
      throws InterruptedException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client = Client.builder().location("global").vertexAI(true).build()) {

      GenerateVideosOperation operation =
          client.models.generateVideos(
              modelId,
              "Extreme close-up of a cluster of vibrant wildflowers"
                  + " swaying gently in a sun-drenched meadow.",
              Image.builder()
                  .gcsUri("gs://cloud-samples-data/generative-ai/image/flowers.png")
                  .mimeType("image/png")
                  .build(),
              GenerateVideosConfig.builder()
                  .aspectRatio("16:9")
                  .outputGcsUri(outputGcsUri)
                  .build());

      while (!operation.done().orElse(false)) {
        TimeUnit.SECONDS.sleep(15);
        operation =
            client.operations.getVideosOperation(operation, GetOperationConfig.builder().build());
      }

      String generatedVideoUri =
          operation
              .response()
              .flatMap(GenerateVideosResponse::generatedVideos)
              .flatMap(videos -> videos.stream().findFirst())
              .flatMap(GeneratedVideo::video)
              .flatMap(Video::uri)
              .orElseThrow(
                  () ->
                      new IllegalStateException(
                          "Could not get the URI from the generated video"));

      System.out.println("Generated video URI: " + generatedVideoUri);
      // Example response:
      // Generated video URI: gs://your-bucket/your-prefix/generated-video-123.mp4
      return generatedVideoUri;
    }
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateVideo(
  outputGcsUri,
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  let operation = await client.models.generateVideos({
    model: 'veo-3.1-fast-generate-001',
    prompt:
      'Extreme close-up of a cluster of vibrant wildflowers swaying gently in a sun-drenched meadow',
    image: {
      gcsUri: 'gs://cloud-samples-data/generative-ai/image/flowers.png',
      mimeType: 'image/png',
    },
    config: {
      aspectRatio: '16:9',
      outputGcsUri: outputGcsUri,
    },
  });

  while (!operation.done) {
    await new Promise(resolve => setTimeout(resolve, 15000));
    operation = await client.operations.get({operation: operation});
    console.log(operation);
  }

  if (operation.response) {
    console.log(operation.response.generatedVideos[0].video.uri);
  }
  return operation;
}

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import time
from google import genai
from google.genai.types import GenerateVideosConfig, Image

client = genai.Client()

# TODO(developer): Update and un-comment below line
# output_gcs_uri = "gs://your-bucket/your-prefix"

operation = client.models.generate_videos(
    model="veo-3.1-generate-001",
    prompt="Extreme close-up of a cluster of vibrant wildflowers swaying gently in a sun-drenched meadow.",
    image=Image(
        gcs_uri="gs://cloud-samples-data/generative-ai/image/flowers.png",
        mime_type="image/png",
    ),
    config=GenerateVideosConfig(
        aspect_ratio="16:9",
        output_gcs_uri=output_gcs_uri,
    ),
)

while not operation.done:
    time.sleep(15)
    operation = client.operations.get(operation)
    print(operation)

if operation.response:
    print(operation.result.generated_videos[0].video.uri)

# Example response:
# gs://your-bucket/your-prefix

Weitere Informationen

Wenn Sie nach Codebeispielen für andere Produkte von Google Cloud suchen und filtern möchten, können Sie den Beispielbrowser fürGoogle Cloud verwenden.