Utiliser Gemini pour résumer des vidéos YouTube

Cet exemple montre comment utiliser Gemini pour résumer des vidéos YouTube.

Exemple de code

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Go.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithYTVideo shows how to generate text using a YouTube video as input.
func generateWithYTVideo(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Write a short and engaging blog post based on this video."},
			{FileData: &genai.FileData{
				FileURI:  "https://www.youtube.com/watch?v=3KtWfp0UopM",
				MIMEType: "video/mp4",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Okay, here’s a short and engaging blog post based on the provided video.
	//
	// **Google's 25th: A Look Back at What We've Searched**
	// ...

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithYoutubeVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with YouTube video input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromUri("https://www.youtube.com/watch?v=3KtWfp0UopM", "video/mp4"),
                  Part.fromText("Write a short and engaging blog post based on this video.")),
              null);

      System.out.print(response.text());
      // Example response:
      // 25 Years of Curiosity: A Google Anniversary Dive into What the World Searched For
      //
      // Remember a time before instant answers were just a click away? 25 years ago, Google
      // launched, unleashing a wave of curiosity that has since charted the collective interests,
      // anxieties, and celebrations of humanity...
      return response.text();
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateText(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const prompt = 'Write a short and engaging blog post based on this video.';

  const ytVideo = {
    fileData: {
      fileUri: 'https://www.youtube.com/watch?v=3KtWfp0UopM',
      mimeType: 'video/mp4',
    },
  };

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [ytVideo, prompt],
  });

  console.log(response.text);

  // Example response:
  //  Here's a short blog post based on the video provided:
  //  **Google Turns 25: A Quarter Century of Search!**
  //  ...

  return response.text;
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

response = client.models.generate_content(
    model=model_id,
    contents=[
        Part.from_uri(
            file_uri="https://www.youtube.com/watch?v=3KtWfp0UopM",
            mime_type="video/mp4",
        ),
        "Write a short and engaging blog post based on this video.",
    ],
)

print(response.text)
# Example response:
# Here's a short blog post based on the video provided:
#
# **Google Turns 25: A Quarter Century of Search!**
# ...

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud , consultez l'explorateur d'exemplesGoogle Cloud .