YouTube-Videos mit Gemini zusammenfassen

In diesem Beispiel wird gezeigt, wie Sie YouTube-Videos mit Gemini zusammenfassen.

Codebeispiel

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Go-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Go API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithYTVideo shows how to generate text using a YouTube video as input.
func generateWithYTVideo(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Write a short and engaging blog post based on this video."},
			{FileData: &genai.FileData{
				FileURI:  "https://www.youtube.com/watch?v=3KtWfp0UopM",
				MIMEType: "video/mp4",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Okay, here’s a short and engaging blog post based on the provided video.
	//
	// **Google's 25th: A Look Back at What We've Searched**
	// ...

	return nil
}

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithYoutubeVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with YouTube video input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromUri("https://www.youtube.com/watch?v=3KtWfp0UopM", "video/mp4"),
                  Part.fromText("Write a short and engaging blog post based on this video.")),
              null);

      System.out.print(response.text());
      // Example response:
      // 25 Years of Curiosity: A Google Anniversary Dive into What the World Searched For
      //
      // Remember a time before instant answers were just a click away? 25 years ago, Google
      // launched, unleashing a wave of curiosity that has since charted the collective interests,
      // anxieties, and celebrations of humanity...
      return response.text();
    }
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateText(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const prompt = 'Write a short and engaging blog post based on this video.';

  const ytVideo = {
    fileData: {
      fileUri: 'https://www.youtube.com/watch?v=3KtWfp0UopM',
      mimeType: 'video/mp4',
    },
  };

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [ytVideo, prompt],
  });

  console.log(response.text);

  // Example response:
  //  Here's a short blog post based on the video provided:
  //  **Google Turns 25: A Quarter Century of Search!**
  //  ...

  return response.text;
}

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

response = client.models.generate_content(
    model=model_id,
    contents=[
        Part.from_uri(
            file_uri="https://www.youtube.com/watch?v=3KtWfp0UopM",
            mime_type="video/mp4",
        ),
        "Write a short and engaging blog post based on this video.",
    ],
)

print(response.text)
# Example response:
# Here's a short blog post based on the video provided:
#
# **Google Turns 25: A Quarter Century of Search!**
# ...

Nächste Schritte

Wenn Sie nach Codebeispielen für andere Produkte von Google Cloud suchen und filtern möchten, können Sie den Beispielbrowser für Google Cloud verwenden.