Menggunakan Gemini untuk meringkas file video lokal

Contoh ini menunjukkan cara menggunakan Gemini untuk meringkas file video lokal.

Contoh kode

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class TextGenerationWithLocalVideo {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with local video input
  public static String generateContent(String modelId) throws IOException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      // Read content from the local video.
      byte[] videoData = Files.readAllBytes(Paths.get("resources/describe_video_content.mp4"));

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromBytes(videoData, "video/mp4"),
                  Part.fromText("Write a short and engaging blog post based on this video.")),
              null);

      System.out.print(response.text());
      // Example response:
      // More Than Just a Climb: Finding Your Flow on the Wall
      // There's something captivating about watching a climber in their element. This short clip
      // offers a perfect glimpse into the focused world of indoor climbing, where precision meets
      // power...
      return response.text();
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

const {GoogleGenAI} = require('@google/genai');
const fs = require('fs');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateText(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const videoContent = fs.readFileSync('test-data/describe_video_content.mp4');

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [
      {text: 'hello-world'},
      {
        inlineData: {
          data: videoContent.toString('base64'),
          mimeType: 'video/mp4',
        },
      },
      {text: 'Write a short and engaging blog post based on this video.'},
    ],
  });

  console.log(response.text);

  // Example response:
  // Okay, here's a short and engaging blog post based on the climbing video:
  // **Title: Conquering the Wall: A Glimpse into the World of Indoor Climbing**
  // ...

  return response.text;
}

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Python Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

# Read local video file content
with open("test_data/describe_video_content.mp4", "rb") as fp:
    # Video source: https://storage.googleapis.com/cloud-samples-data/generative-ai/video/describe_video_content.mp4
    video_content = fp.read()

response = client.models.generate_content(
    model=model_id,
    contents=[
        Part.from_text(text="hello-world"),
        Part.from_bytes(data=video_content, mime_type="video/mp4"),
        "Write a short and engaging blog post based on this video.",
    ],
)

print(response.text)
# Example response:
# Okay, here's a short and engaging blog post based on the climbing video:
# **Title: Conquering the Wall: A Glimpse into the World of Indoor Climbing**
# ...

Langkah berikutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat Google Cloud browser contoh.