Generare testo con impostazioni di sicurezza

Questo esempio mostra come utilizzare il modello Gemini con le impostazioni di sicurezza per generare testo.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Go.

Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"fmt"
	"io"

	"google.golang.org/genai"
)

// generateTextWithSafety shows how to apply safety settings to a text generation request.
func generateTextWithSafety(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	systemInstruction := &genai.Content{
		Parts: []*genai.Part{
			{Text: "Be as mean as possible."},
		},
		Role: genai.RoleUser,
	}

	prompt := "Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark."

	safetySettings := []*genai.SafetySetting{
		{Category: genai.HarmCategoryDangerousContent, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategoryHarassment, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategoryHateSpeech, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategorySexuallyExplicit, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
	}

	config := &genai.GenerateContentConfig{
		SystemInstruction: systemInstruction,
		SafetySettings:    safetySettings,
	}
	modelName := "gemini-2.5-flash"
	resp, err := client.Models.GenerateContent(ctx, modelName,
		[]*genai.Content{{Parts: []*genai.Part{{Text: prompt}}, Role: genai.RoleUser}},
		config,
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintln(w, resp.Text())

	if len(resp.Candidates) > 0 {
		fmt.Fprintln(w, "Finish Reason:", resp.Candidates[0].FinishReason)

		for _, rating := range resp.Candidates[0].SafetyRatings {
			fmt.Fprintf(w, "\nCategory: %v\nIs Blocked: %v\nProbability: %v\nProbability Score: %v\nSeverity: %v\nSeverity Score: %v\n",
				rating.Category,
				rating.Blocked,
				rating.Probability,
				rating.ProbabilityScore,
				rating.Severity,
				rating.SeverityScore,
			)
		}
	}

	// Example response:
	// Category: HARM_CATEGORY_HATE_SPEECH
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 8.996795e-06
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.04771039
	//
	// Category: HARM_CATEGORY_DANGEROUS_CONTENT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 2.2431707e-06
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0
	//
	// Category: HARM_CATEGORY_HARASSMENT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 0.00026123362
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.022358216
	//
	// Category: HARM_CATEGORY_SEXUALLY_EXPLICIT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 6.1352006e-07
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.020111412

	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Java.

Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configura l'autenticazione per un ambiente di sviluppo locale.


import com.google.genai.Client;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HarmBlockThreshold;
import com.google.genai.types.HarmCategory;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import com.google.genai.types.SafetySetting;
import java.util.List;
import java.util.stream.Collectors;

public class SafetyWithTxt {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Shows how to generate content with safety settings.
  public static GenerateContentResponse generateContent(String modelId) {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      String systemInstruction = "Be as mean as possible.";

      String prompt =
          "Write a list of 5 disrespectful things that I might say"
              + " to the universe after stubbing my toe in the dark.";

      // Set safety settings.
      List<HarmCategory.Known> categoriesToBlock =
          List.of(
              HarmCategory.Known.HARM_CATEGORY_DANGEROUS_CONTENT,
              HarmCategory.Known.HARM_CATEGORY_HARASSMENT,
              HarmCategory.Known.HARM_CATEGORY_HATE_SPEECH,
              HarmCategory.Known.HARM_CATEGORY_SEXUALLY_EXPLICIT);

      List<SafetySetting> safetySettings =
          categoriesToBlock.stream()
              .map(
                  category ->
                      SafetySetting.builder()
                          .category(category)
                          .threshold(HarmBlockThreshold.Known.BLOCK_LOW_AND_ABOVE)
                          .build())
                  .collect(Collectors.toList());

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              prompt,
              GenerateContentConfig.builder()
                  .systemInstruction(Content.fromParts(Part.fromText(systemInstruction)))
                  .safetySettings(safetySettings)
                  .build());

      // Get response candidate.
      Candidate candidate =
          response
              .candidates()
              .flatMap(candidates -> candidates.stream().findFirst())
              .orElseThrow(
                  () -> new IllegalStateException("No response candidate generated by the model."));

      // Finish Reason will be `SAFETY` if it is blocked.
      System.out.println(candidate.finishReason());
      // Example response:
      // Optional[SAFETY]

      // For details on all the fields in the response.
      candidate
          .safetyRatings()
          .ifPresent(
              safetyRatings ->
                  safetyRatings.forEach(
                      safetyRating -> {
                        System.out.println("\nCategory: " + safetyRating.category());
                        System.out.println("Is Blocked: " + safetyRating.blocked());
                        System.out.println("Probability: " + safetyRating.probability());
                        System.out.println("Probability Score: " + safetyRating.probabilityScore());
                        System.out.println("Severity: " + safetyRating.severity());
                        System.out.println("Severity Score: " + safetyRating.severityScore());
                      }));
      // Example response:
      // Category: Optional[HARM_CATEGORY_HATE_SPEECH]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[1.9967922E-5]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.05732864]
      //
      // Category: Optional[HARM_CATEGORY_DANGEROUS_CONTENT]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[2.9124324E-6]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.04544826]
      //
      // Category: Optional[HARM_CATEGORY_HARASSMENT]
      // Is Blocked: Optional[true]
      // Probability: Optional[MEDIUM]
      // Probability Score: Optional[0.4593908]
      // Severity: Optional[HARM_SEVERITY_MEDIUM]
      // Severity Score: Optional[0.22082388]
      //
      // Category: Optional[HARM_CATEGORY_SEXUALLY_EXPLICIT]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[6.453211E-8]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.023201048]
      return response;
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Node.js.

Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateWithSafetySettings(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const systemInstruction = 'Be as mean as possible.';

  const prompt =
    'Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark.';

  const safetySettings = [
    {
      category: 'HARM_CATEGORY_DANGEROUS_CONTENT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_HARASSMENT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_HATE_SPEECH',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
  ];

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: prompt,
    config: {
      systemInstruction: systemInstruction,
      safetySettings: safetySettings,
    },
  });

  // console.log(response.text);
  // console.log(response.candidates[0].finishMessage);
  //
  // for (const each of response.candidates[0].safetyRatings) {
  //   console.log('\nCategory:', String(each.category));
  //   console.log('Is Blocked:', each.blocked);
  //   console.log('Probability:', each.probability);
  //   console.log('Probability Score:', each.probabilityScore);
  //   console.log('Severity:', each.severity);
  //   console.log('Severity Score:', each.severityScore);
  // }

  // Example response:
  //
  //     Category:  HarmCategory.HARM_CATEGORY_HATE_SPEECH
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  2.547714e-05
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None
  //
  //     Category:  HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  3.6103818e-06
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None
  //
  //     Category:  HarmCategory.HARM_CATEGORY_HARASSMENT
  //     Is Blocked: True
  //     Probability:  HarmProbability.MEDIUM
  //     Probability Score:  0.71599233
  //     Severity: HarmSeverity.HARM_SEVERITY_MEDIUM
  //     Severity Score: 0.30782545
  //
  //     Category:  HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  1.5624657e-05
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None

  return response;
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Python.

Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

from google import genai
from google.genai.types import (
    GenerateContentConfig,
    HarmCategory,
    HarmBlockThreshold,
    HttpOptions,
    SafetySetting,
)

client = genai.Client(http_options=HttpOptions(api_version="v1"))

system_instruction = "Be as mean as possible."

prompt = """
    Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark.
"""

safety_settings = [
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_HARASSMENT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_HATE_SPEECH,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
]

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=prompt,
    config=GenerateContentConfig(
        system_instruction=system_instruction,
        safety_settings=safety_settings,
    ),
)

# Response will be `None` if it is blocked.
print(response.text)
# Example response:
#     None

# Finish Reason will be `SAFETY` if it is blocked.
print(response.candidates[0].finish_reason)
# Example response:
#     FinishReason.SAFETY

# For details on all the fields in the response
for each in response.candidates[0].safety_ratings:
    print('\nCategory: ', str(each.category))
    print('Is Blocked:', True if each.blocked else False)
    print('Probability: ', each.probability)
    print('Probability Score: ', each.probability_score)
    print('Severity:', each.severity)
    print('Severity Score:', each.severity_score)
# Example response:
#
#     Category:  HarmCategory.HARM_CATEGORY_HATE_SPEECH
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  2.547714e-05
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None
#
#     Category:  HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  3.6103818e-06
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None
#
#     Category:  HarmCategory.HARM_CATEGORY_HARASSMENT
#     Is Blocked: True
#     Probability:  HarmProbability.MEDIUM
#     Probability Score:  0.71599233
#     Severity: HarmSeverity.HARM_SEVERITY_MEDIUM
#     Severity Score: 0.30782545
#
#     Category:  HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  1.5624657e-05
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .