Genera texto con la configuración de seguridad

En este ejemplo, se muestra cómo usar el modelo de Gemini con la configuración de seguridad para generar texto.

Explora más

Para obtener documentación detallada en la que se incluya esta muestra de código, consulta lo siguiente:

Muestra de código

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Go.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import (
	"context"
	"fmt"
	"io"

	"google.golang.org/genai"
)

// generateTextWithSafety shows how to apply safety settings to a text generation request.
func generateTextWithSafety(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	systemInstruction := &genai.Content{
		Parts: []*genai.Part{
			{Text: "Be as mean as possible."},
		},
		Role: genai.RoleUser,
	}

	prompt := "Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark."

	safetySettings := []*genai.SafetySetting{
		{Category: genai.HarmCategoryDangerousContent, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategoryHarassment, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategoryHateSpeech, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
		{Category: genai.HarmCategorySexuallyExplicit, Threshold: genai.HarmBlockThresholdBlockLowAndAbove},
	}

	config := &genai.GenerateContentConfig{
		SystemInstruction: systemInstruction,
		SafetySettings:    safetySettings,
	}
	modelName := "gemini-2.5-flash"
	resp, err := client.Models.GenerateContent(ctx, modelName,
		[]*genai.Content{{Parts: []*genai.Part{{Text: prompt}}, Role: genai.RoleUser}},
		config,
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintln(w, resp.Text())

	if len(resp.Candidates) > 0 {
		fmt.Fprintln(w, "Finish Reason:", resp.Candidates[0].FinishReason)

		for _, rating := range resp.Candidates[0].SafetyRatings {
			fmt.Fprintf(w, "\nCategory: %v\nIs Blocked: %v\nProbability: %v\nProbability Score: %v\nSeverity: %v\nSeverity Score: %v\n",
				rating.Category,
				rating.Blocked,
				rating.Probability,
				rating.ProbabilityScore,
				rating.Severity,
				rating.SeverityScore,
			)
		}
	}

	// Example response:
	// Category: HARM_CATEGORY_HATE_SPEECH
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 8.996795e-06
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.04771039
	//
	// Category: HARM_CATEGORY_DANGEROUS_CONTENT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 2.2431707e-06
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0
	//
	// Category: HARM_CATEGORY_HARASSMENT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 0.00026123362
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.022358216
	//
	// Category: HARM_CATEGORY_SEXUALLY_EXPLICIT
	// Is Blocked: false
	// Probability: NEGLIGIBLE
	// Probability Score: 6.1352006e-07
	// Severity: HARM_SEVERITY_NEGLIGIBLE
	// Severity Score: 0.020111412

	return nil
}

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.genai.Client;
import com.google.genai.types.Candidate;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HarmBlockThreshold;
import com.google.genai.types.HarmCategory;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import com.google.genai.types.SafetySetting;
import java.util.List;
import java.util.stream.Collectors;

public class SafetyWithTxt {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Shows how to generate content with safety settings.
  public static GenerateContentResponse generateContent(String modelId) {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      String systemInstruction = "Be as mean as possible.";

      String prompt =
          "Write a list of 5 disrespectful things that I might say"
              + " to the universe after stubbing my toe in the dark.";

      // Set safety settings.
      List<HarmCategory.Known> categoriesToBlock =
          List.of(
              HarmCategory.Known.HARM_CATEGORY_DANGEROUS_CONTENT,
              HarmCategory.Known.HARM_CATEGORY_HARASSMENT,
              HarmCategory.Known.HARM_CATEGORY_HATE_SPEECH,
              HarmCategory.Known.HARM_CATEGORY_SEXUALLY_EXPLICIT);

      List<SafetySetting> safetySettings =
          categoriesToBlock.stream()
              .map(
                  category ->
                      SafetySetting.builder()
                          .category(category)
                          .threshold(HarmBlockThreshold.Known.BLOCK_LOW_AND_ABOVE)
                          .build())
                  .collect(Collectors.toList());

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              prompt,
              GenerateContentConfig.builder()
                  .systemInstruction(Content.fromParts(Part.fromText(systemInstruction)))
                  .safetySettings(safetySettings)
                  .build());

      // Get response candidate.
      Candidate candidate =
          response
              .candidates()
              .flatMap(candidates -> candidates.stream().findFirst())
              .orElseThrow(
                  () -> new IllegalStateException("No response candidate generated by the model."));

      // Finish Reason will be `SAFETY` if it is blocked.
      System.out.println(candidate.finishReason());
      // Example response:
      // Optional[SAFETY]

      // For details on all the fields in the response.
      candidate
          .safetyRatings()
          .ifPresent(
              safetyRatings ->
                  safetyRatings.forEach(
                      safetyRating -> {
                        System.out.println("\nCategory: " + safetyRating.category());
                        System.out.println("Is Blocked: " + safetyRating.blocked());
                        System.out.println("Probability: " + safetyRating.probability());
                        System.out.println("Probability Score: " + safetyRating.probabilityScore());
                        System.out.println("Severity: " + safetyRating.severity());
                        System.out.println("Severity Score: " + safetyRating.severityScore());
                      }));
      // Example response:
      // Category: Optional[HARM_CATEGORY_HATE_SPEECH]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[1.9967922E-5]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.05732864]
      //
      // Category: Optional[HARM_CATEGORY_DANGEROUS_CONTENT]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[2.9124324E-6]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.04544826]
      //
      // Category: Optional[HARM_CATEGORY_HARASSMENT]
      // Is Blocked: Optional[true]
      // Probability: Optional[MEDIUM]
      // Probability Score: Optional[0.4593908]
      // Severity: Optional[HARM_SEVERITY_MEDIUM]
      // Severity Score: Optional[0.22082388]
      //
      // Category: Optional[HARM_CATEGORY_SEXUALLY_EXPLICIT]
      // Is Blocked: Optional.empty
      // Probability: Optional[NEGLIGIBLE]
      // Probability Score: Optional[6.453211E-8]
      // Severity: Optional[HARM_SEVERITY_NEGLIGIBLE]
      // Severity Score: Optional[0.023201048]
      return response;
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateWithSafetySettings(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const systemInstruction = 'Be as mean as possible.';

  const prompt =
    'Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark.';

  const safetySettings = [
    {
      category: 'HARM_CATEGORY_DANGEROUS_CONTENT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_HARASSMENT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_HATE_SPEECH',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
    {
      category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
      threshold: 'BLOCK_LOW_AND_ABOVE',
    },
  ];

  const response = await client.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: prompt,
    config: {
      systemInstruction: systemInstruction,
      safetySettings: safetySettings,
    },
  });

  // console.log(response.text);
  // console.log(response.candidates[0].finishMessage);
  //
  // for (const each of response.candidates[0].safetyRatings) {
  //   console.log('\nCategory:', String(each.category));
  //   console.log('Is Blocked:', each.blocked);
  //   console.log('Probability:', each.probability);
  //   console.log('Probability Score:', each.probabilityScore);
  //   console.log('Severity:', each.severity);
  //   console.log('Severity Score:', each.severityScore);
  // }

  // Example response:
  //
  //     Category:  HarmCategory.HARM_CATEGORY_HATE_SPEECH
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  2.547714e-05
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None
  //
  //     Category:  HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  3.6103818e-06
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None
  //
  //     Category:  HarmCategory.HARM_CATEGORY_HARASSMENT
  //     Is Blocked: True
  //     Probability:  HarmProbability.MEDIUM
  //     Probability Score:  0.71599233
  //     Severity: HarmSeverity.HARM_SEVERITY_MEDIUM
  //     Severity Score: 0.30782545
  //
  //     Category:  HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT
  //     Is Blocked: False
  //     Probability:  HarmProbability.NEGLIGIBLE
  //     Probability Score:  1.5624657e-05
  //     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
  //     Severity Score: None

  return response;
}

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google import genai
from google.genai.types import (
    GenerateContentConfig,
    HarmCategory,
    HarmBlockThreshold,
    HttpOptions,
    SafetySetting,
)

client = genai.Client(http_options=HttpOptions(api_version="v1"))

system_instruction = "Be as mean as possible."

prompt = """
    Write a list of 5 disrespectful things that I might say to the universe after stubbing my toe in the dark.
"""

safety_settings = [
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_HARASSMENT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_HATE_SPEECH,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
]

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=prompt,
    config=GenerateContentConfig(
        system_instruction=system_instruction,
        safety_settings=safety_settings,
    ),
)

# Response will be `None` if it is blocked.
print(response.text)
# Example response:
#     None

# Finish Reason will be `SAFETY` if it is blocked.
print(response.candidates[0].finish_reason)
# Example response:
#     FinishReason.SAFETY

# For details on all the fields in the response
for each in response.candidates[0].safety_ratings:
    print('\nCategory: ', str(each.category))
    print('Is Blocked:', True if each.blocked else False)
    print('Probability: ', each.probability)
    print('Probability Score: ', each.probability_score)
    print('Severity:', each.severity)
    print('Severity Score:', each.severity_score)
# Example response:
#
#     Category:  HarmCategory.HARM_CATEGORY_HATE_SPEECH
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  2.547714e-05
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None
#
#     Category:  HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  3.6103818e-06
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None
#
#     Category:  HarmCategory.HARM_CATEGORY_HARASSMENT
#     Is Blocked: True
#     Probability:  HarmProbability.MEDIUM
#     Probability Score:  0.71599233
#     Severity: HarmSeverity.HARM_SEVERITY_MEDIUM
#     Severity Score: 0.30782545
#
#     Category:  HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT
#     Is Blocked: False
#     Probability:  HarmProbability.NEGLIGIBLE
#     Probability Score:  1.5624657e-05
#     Severity: HarmSeverity.HARM_SEVERITY_NEGLIGIBLE
#     Severity Score: None

¿Qué sigue?

Si quieres buscar y filtrar muestras de código para otros productos de Google Cloud , consulta el navegador de muestras deGoogle Cloud .