Predicibilità batch con Gemini utilizzando i dati di BigQuery

Esegui la previsione batch di testo con Gemini utilizzando l'origine dati BigQuery come input.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Go.

Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"fmt"
	"io"
	"time"

	"google.golang.org/genai"
)

// generateBatchPredictWithBQ shows how to run a batch prediction job with BigQuery input/output.
func generateBatchPredictWithBQ(w io.Writer, outputURI string) error {
	// outputURI = "bq://your-project.your_dataset.your_table"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	// BigQuery input
	src := &genai.BatchJobSource{
		Format:      "bigquery",
		BigqueryURI: "bq://storage-samples.generative_ai.batch_requests_for_multimodal_input",
	}

	// BigQuery output
	config := &genai.CreateBatchJobConfig{
		Dest: &genai.BatchJobDestination{
			Format:      "bigquery",
			BigqueryURI: outputURI,
		},
	}

	// To use a tuned model, set the model param to your tuned model using the following format:
	//  modelName:= "projects/{PROJECT_ID}/locations/{LOCATION}/models/{MODEL_ID}
	modelName := "gemini-2.5-flash"
	job, err := client.Batches.Create(ctx, modelName, src, config)
	if err != nil {
		return fmt.Errorf("failed to create batch job: %w", err)
	}

	fmt.Fprintf(w, "Job name: %s\n", job.Name)
	fmt.Fprintf(w, "Job state: %s\n", job.State)
	// Example response:
	//  Job name: projects/{PROJECT_ID}/locations/us-central1/batchPredictionJobs/9876453210000000000
	//  Job state: JOB_STATE_PENDING

	// See the documentation: https://pkg.go.dev/google.golang.org/genai#BatchJob
	completedStates := map[genai.JobState]bool{
		genai.JobStateSucceeded: true,
		genai.JobStateFailed:    true,
		genai.JobStateCancelled: true,
		genai.JobStatePaused:    true,
	}

	for !completedStates[job.State] {
		time.Sleep(30 * time.Second)
		job, err = client.Batches.Get(ctx, job.Name, nil)
		if err != nil {
			return fmt.Errorf("failed to get batch job: %w", err)
		}
		fmt.Fprintf(w, "Job state: %s\n", job.State)
	}

	// Example response:
	//  Job state: JOB_STATE_PENDING
	//  Job state: JOB_STATE_RUNNING
	//  Job state: JOB_STATE_RUNNING
	//  ...
	//  Job state: JOB_STATE_SUCCEEDED

	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Java.

Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configura l'autenticazione per un ambiente di sviluppo locale.


import static com.google.genai.types.JobState.Known.JOB_STATE_CANCELLED;
import static com.google.genai.types.JobState.Known.JOB_STATE_FAILED;
import static com.google.genai.types.JobState.Known.JOB_STATE_PAUSED;
import static com.google.genai.types.JobState.Known.JOB_STATE_SUCCEEDED;

import com.google.genai.Client;
import com.google.genai.types.BatchJob;
import com.google.genai.types.BatchJobDestination;
import com.google.genai.types.BatchJobSource;
import com.google.genai.types.CreateBatchJobConfig;
import com.google.genai.types.GetBatchJobConfig;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.JobState;
import java.util.EnumSet;
import java.util.Set;
import java.util.concurrent.TimeUnit;

public class BatchPredictionWithBq {

  public static void main(String[] args) throws InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    // To use a tuned model, set the model param to your tuned model using the following format:
    // modelId = "projects/{PROJECT_ID}/locations/{LOCATION}/models/{MODEL_ID}
    String modelId = "gemini-2.5-flash";
    String outputUri = "bq://your-project.your_dataset.your_table";
    createBatchJob(modelId, outputUri);
  }

  // Creates a batch prediction job with Google BigQuery.
  public static JobState createBatchJob(String modelId, String outputUri)
      throws InterruptedException {
    // Client Initialization. Once created, it can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("us-central1")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      // See the documentation:
      // https://googleapis.github.io/java-genai/javadoc/com/google/genai/Batches.html
      BatchJobSource batchJobSource =
          BatchJobSource.builder()
              .bigqueryUri("bq://storage-samples.generative_ai.batch_requests_for_multimodal_input")
              .format("bigquery")
              .build();

      CreateBatchJobConfig batchJobConfig =
          CreateBatchJobConfig.builder()
              .displayName("your-display-name")
              .dest(BatchJobDestination.builder().bigqueryUri(outputUri).format("bigquery").build())
              .build();

      BatchJob batchJob = client.batches.create(modelId, batchJobSource, batchJobConfig);

      String jobName =
          batchJob.name().orElseThrow(() -> new IllegalStateException("Missing job name"));
      JobState jobState =
          batchJob.state().orElseThrow(() -> new IllegalStateException("Missing job state"));
      System.out.println("Job name: " + jobName);
      System.out.println("Job state: " + jobState);
      // Job name:
      // projects/.../locations/.../batchPredictionJobs/3189981423167602688
      // Job state: JOB_STATE_PENDING

      // See the documentation:
      // https://googleapis.github.io/java-genai/javadoc/com/google/genai/types/BatchJob.html
      Set<JobState.Known> completedStates =
          EnumSet.of(JOB_STATE_SUCCEEDED, JOB_STATE_FAILED, JOB_STATE_CANCELLED, JOB_STATE_PAUSED);

      while (!completedStates.contains(jobState.knownEnum())) {
        TimeUnit.SECONDS.sleep(30);
        batchJob = client.batches.get(jobName, GetBatchJobConfig.builder().build());
        jobState =
            batchJob
                .state()
                .orElseThrow(() -> new IllegalStateException("Missing job state during polling"));
        System.out.println("Job state: " + jobState);
      }
      // Example response:
      // Job state: JOB_STATE_QUEUED
      // Job state: JOB_STATE_RUNNING
      // Job state: JOB_STATE_RUNNING
      // ...
      // Job state: JOB_STATE_SUCCEEDED
      return jobState;
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Node.js.

Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';
const OUTPUT_URI = 'bq://your-project.your_dataset.your_table';

async function runBatchPredictionJob(
  outputUri = OUTPUT_URI,
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const client = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
    httpOptions: {
      apiVersion: 'v1',
    },
  });

  // See the documentation: https://googleapis.github.io/js-genai/release_docs/classes/batches.Batches.html
  let job = await client.batches.create({
    // To use a tuned model, set the model param to your tuned model using the following format:
    // model="projects/{PROJECT_ID}/locations/{LOCATION}/models/{MODEL_ID}"
    model: 'gemini-2.5-flash',
    src: 'bq://storage-samples.generative_ai.batch_requests_for_multimodal_input',
    config: {
      dest: outputUri,
    },
  });

  console.log(`Job name: ${job.name}`);
  console.log(`Job state: ${job.state}`);

  // Example response:
  //  Job name: projects/%PROJECT_ID%/locations/us-central1/batchPredictionJobs/9876453210000000000
  //  Job state: JOB_STATE_PENDING

  const completedStates = new Set([
    'JOB_STATE_SUCCEEDED',
    'JOB_STATE_FAILED',
    'JOB_STATE_CANCELLED',
    'JOB_STATE_PAUSED',
  ]);

  while (!completedStates.has(job.state)) {
    await new Promise(resolve => setTimeout(resolve, 30000));
    job = await client.batches.get({name: job.name});
    console.log(`Job state: ${job.state}`);
  }

  // Example response:
  //  Job state: JOB_STATE_PENDING
  //  Job state: JOB_STATE_RUNNING
  //  Job state: JOB_STATE_RUNNING
  //  ...
  //  Job state: JOB_STATE_SUCCEEDED

  return job.state;
}

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per saperne di più, consulta la documentazione di riferimento dell'API Vertex AI Python.

Per eseguire l'autenticazione in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

import time

from google import genai
from google.genai.types import CreateBatchJobConfig, JobState, HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))

# TODO(developer): Update and un-comment below line
# output_uri = f"bq://your-project.your_dataset.your_table"

job = client.batches.create(
    # To use a tuned model, set the model param to your tuned model using the following format:
    # model="projects/{PROJECT_ID}/locations/{LOCATION}/models/{MODEL_ID}
    model="gemini-2.5-flash",
    src="bq://storage-samples.generative_ai.batch_requests_for_multimodal_input",
    config=CreateBatchJobConfig(dest=output_uri),
)
print(f"Job name: {job.name}")
print(f"Job state: {job.state}")
# Example response:
# Job name: projects/.../locations/.../batchPredictionJobs/9876453210000000000
# Job state: JOB_STATE_PENDING

# See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.types.BatchJob
completed_states = {
    JobState.JOB_STATE_SUCCEEDED,
    JobState.JOB_STATE_FAILED,
    JobState.JOB_STATE_CANCELLED,
    JobState.JOB_STATE_PAUSED,
}

while job.state not in completed_states:
    time.sleep(30)
    job = client.batches.get(name=job.name)
    print(f"Job state: {job.state}")
# Example response:
# Job state: JOB_STATE_PENDING
# Job state: JOB_STATE_RUNNING
# Job state: JOB_STATE_RUNNING
# ...
# Job state: JOB_STATE_SUCCEEDED

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .