Ajusta los modelos de IA generativa con el ajuste fino supervisado de Vertex AI

Ajustar automáticamente un modelo de Gemini con el ajuste supervisado (SFT) de Vertex AI de Google Cloud

Explora más

Para obtener documentación detallada en la que se incluya esta muestra de código, consulta lo siguiente:

Muestra de código

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import time

import vertexai
from vertexai.tuning import sft

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

sft_tuning_job = sft.train(
    source_model="gemini-2.0-flash-001",
    # 1.5 and 2.0 models use the same JSONL format
    train_dataset="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl",
)

# Polling for job completion
while not sft_tuning_job.has_ended:
    time.sleep(60)
    sft_tuning_job.refresh()

print(sft_tuning_job.tuned_model_name)
print(sft_tuning_job.tuned_model_endpoint_name)
print(sft_tuning_job.experiment)
# Example response:
# projects/123456789012/locations/us-central1/models/1234567890@1
# projects/123456789012/locations/us-central1/endpoints/123456789012345
# <google.cloud.aiplatform.metadata.experiment_resources.Experiment object at 0x7b5b4ae07af0>

¿Qué sigue?

Si quieres buscar y filtrar muestras de código para otros productos de Google Cloud , consulta el navegador de muestras deGoogle Cloud .