创建索引

此示例演示了如何创建索引以导入或上传文档。

深入探索

如需查看包含此代码示例的详细文档,请参阅以下内容:

代码示例

Python

在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Python API 参考文档

如需向 Vertex AI 进行身份验证,请设置应用默认凭证。 如需了解详情,请参阅为本地开发环境设置身份验证


from vertexai import rag
import vertexai

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# display_name = "test_corpus"
# description = "Corpus Description"

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

# Configure backend_config
backend_config = rag.RagVectorDbConfig(
    rag_embedding_model_config=rag.RagEmbeddingModelConfig(
        vertex_prediction_endpoint=rag.VertexPredictionEndpoint(
            publisher_model="publishers/google/models/text-embedding-005"
        )
    )
)

corpus = rag.create_corpus(
    display_name=display_name,
    description=description,
    backend_config=backend_config,
)
print(corpus)
# Example response:
# RagCorpus(name='projects/1234567890/locations/us-central1/ragCorpora/1234567890',
# display_name='test_corpus', description='Corpus Description', embedding_model_config=...
# ...

后续步骤

如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅Google Cloud 示例浏览器