AlloyDBVectorStore(
key: object,
engine: langchain_postgres.v2.engine.PGEngine,
vs: langchain_postgres.v2.async_vectorstore.AsyncPGVectorStore,
)Google AlloyDB Vector Store class
Methods
AlloyDBVectorStore
AlloyDBVectorStore(
key: object,
engine: langchain_postgres.v2.engine.PGEngine,
vs: langchain_postgres.v2.async_vectorstore.AsyncPGVectorStore,
)PGVectorStore constructor.
| Parameters | |
|---|---|
| Name | Description |
key |
object
Prevent direct constructor usage. |
engine |
PGEngine
Connection pool engine for managing connections to Postgres database. |
vs |
AsyncPGVectorStore
The async only VectorStore implementation |
| Exceptions | |
|---|---|
| Type | Description |
Exception |
If called directly by user. |
aadd_images
aadd_images(
uris: list[str],
metadatas: typing.Optional[list[dict]] = None,
ids: typing.Optional[list[str]] = None,
store_uri_only: bool = False,
**kwargs: typing.Any
) -> list[str]Embed images and add to the table.
add_images
add_images(
uris: list[str],
metadatas: typing.Optional[list[dict]] = None,
ids: typing.Optional[list[str]] = None,
store_uri_only: bool = False,
**kwargs: typing.Any
) -> list[str]Embed images and add to the table.
aset_maintenance_work_mem
aset_maintenance_work_mem(num_leaves: int, vector_size: int) -> NoneSet database maintenance work memory (for ScaNN index creation).
asimilarity_search_image
asimilarity_search_image(
image_uri: str,
k: typing.Optional[int] = None,
filter: typing.Optional[dict] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]Return docs selected by similarity search on image_uri.
create
create(
engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
embedding_service: langchain_core.embeddings.embeddings.Embeddings,
table_name: str,
schema_name: str = "public",
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: typing.Optional[list[str]] = None,
ignore_metadata_columns: typing.Optional[list[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: typing.Optional[str] = "langchain_metadata",
distance_strategy: langchain_postgres.v2.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_postgres.v2.indexes.QueryOptions
] = None,
hybrid_search_config: typing.Optional[
langchain_postgres.v2.hybrid_search_config.HybridSearchConfig
] = None,
) -> langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStoreCreate an PGVectorStore instance.
| Parameters | |
|---|---|
| Name | Description |
engine |
AlloyDBEngine
Connection pool engine for managing connections to postgres database. |
embedding_service |
Embeddings
Text embedding model to use. |
table_name |
str
Name of an existing table. |
schema_name |
str, optional
Name of the database schema. Defaults to "public". |
content_column |
str
Column that represent a Document's page_content. Defaults to "content". |
embedding_column |
str
Column for embedding vectors. The embedding is generated from the document value. Defaults to "embedding". |
metadata_columns |
list[str]
Column(s) that represent a document's metadata. |
ignore_metadata_columns |
list[str]
Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns. Defaults to None. |
id_column |
str
Column that represents the Document's id. Defaults to "langchain_id". |
metadata_json_column |
str
Column to store metadata as JSON. Defaults to "langchain_metadata". |
distance_strategy |
DistanceStrategy
Distance strategy to use for vector similarity search. Defaults to COSINE_DISTANCE. |
k |
int
Number of Documents to return from search. Defaults to 4. |
fetch_k |
int
Number of Documents to fetch to pass to MMR algorithm. |
lambda_mult |
float
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. |
index_query_options |
QueryOptions
Index query option. |
hybrid_search_config |
HybridSearchConfig
Hybrid search configuration. Defaults to None. |
create_sync
create_sync(
engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
embedding_service: langchain_core.embeddings.embeddings.Embeddings,
table_name: str,
schema_name: str = "public",
content_column: str = "content",
embedding_column: str = "embedding",
metadata_columns: typing.Optional[list[str]] = None,
ignore_metadata_columns: typing.Optional[list[str]] = None,
id_column: str = "langchain_id",
metadata_json_column: str = "langchain_metadata",
distance_strategy: langchain_postgres.v2.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
index_query_options: typing.Optional[
langchain_postgres.v2.indexes.QueryOptions
] = None,
hybrid_search_config: typing.Optional[
langchain_postgres.v2.hybrid_search_config.HybridSearchConfig
] = None,
) -> langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStoreCreate an AlloyDBVectorStore instance.
| Parameters | |
|---|---|
| Name | Description |
key |
object
Prevent direct constructor usage. |
engine |
AlloyDBEngine
Connection pool engine for managing connections to AlloyDB database. |
embedding_service |
Embeddings
Text embedding model to use. |
table_name |
str
Name of an existing table. |
schema_name |
str, optional
Name of the database schema. Defaults to "public". |
content_column |
str, optional
Column that represent a Document’s page_content. Defaults to "content". |
embedding_column |
str, optional
Column for embedding vectors. The embedding is generated from the document value. Defaults to "embedding". |
metadata_columns |
list[str]
Column(s) that represent a document's metadata. Defaults to an empty list. |
ignore_metadata_columns |
Optional[list[str]]
Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns. Defaults to None. |
id_column |
str, optional
Column that represents the Document's id. Defaults to "langchain_id". |
metadata_json_column |
str, optional
Column to store metadata as JSON. Defaults to "langchain_metadata". |
distance_strategy |
DistanceStrategy, optional
Distance strategy to use for vector similarity search. Defaults to COSINE_DISTANCE. |
k |
int, optional
Number of Documents to return from search. Defaults to 4. |
fetch_k |
int, optional
Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. |
lambda_mult |
float, optional
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. |
index_query_options |
Optional[QueryOptions], optional
Index query option. Defaults to None. |
hybrid_search_config |
HybridSearchConfig
Hybrid search configuration. Defaults to None. |
set_maintenance_work_mem
set_maintenance_work_mem(num_leaves: int, vector_size: int) -> NoneSet database maintenance work memory (for ScaNN index creation).
similarity_search_image
similarity_search_image(
image_uri: str,
k: typing.Optional[int] = None,
filter: typing.Optional[dict] = None,
**kwargs: typing.Any
) -> list[langchain_core.documents.base.Document]Return docs selected by similarity search on image.