Module llm (2.30.0)

LLM models.

Classes

Claude3TextGenerator

Claude3TextGenerator(
    *,
    model_name: typing.Optional[
        typing.Literal[
            "claude-3-sonnet", "claude-3-haiku", "claude-3-5-sonnet", "claude-3-opus"
        ]
    ] = None,
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None
)

Claude3 text generator LLM model.

Go to Google Cloud Console -> Vertex AI -> Model Garden page to enable the models before use. Must have the Consumer Procurement Entitlement Manager Identity and Access Management (IAM) role to enable the models. https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/use-partner-models#grant-permissions

The models only available in specific regions. Check https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/use-claude#regions for details.

GeminiTextGenerator

GeminiTextGenerator(
    *,
    model_name: typing.Optional[
        typing.Literal[
            "gemini-1.5-pro-preview-0514",
            "gemini-1.5-flash-preview-0514",
            "gemini-1.5-pro-001",
            "gemini-1.5-pro-002",
            "gemini-1.5-flash-001",
            "gemini-1.5-flash-002",
            "gemini-2.0-flash-exp",
            "gemini-2.0-flash-001",
            "gemini-2.0-flash-lite-001",
            "gemini-2.5-pro",
            "gemini-2.5-flash",
            "gemini-2.5-flash-lite",
        ]
    ] = None,
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None,
    max_iterations: int = 300
)

Gemini text generator LLM model.

MultimodalEmbeddingGenerator

MultimodalEmbeddingGenerator(
    *,
    model_name: typing.Optional[typing.Literal["multimodalembedding@001"]] = None,
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None
)

Multimodal embedding generator LLM model.

TextEmbeddingGenerator

TextEmbeddingGenerator(
    *,
    model_name: typing.Optional[
        typing.Literal[
            "text-embedding-005",
            "text-embedding-004",
            "text-multilingual-embedding-002",
        ]
    ] = None,
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None
)

Text embedding generator LLM model.

Modules Functions

cast

cast(typ, val)

Cast a value to a type.

This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don't check anything (we want this to be as fast as possible).