Class GeminiTextGenerator (2.29.0)

GeminiTextGenerator(
    *,
    model_name: typing.Optional[
        typing.Literal[
            "gemini-1.5-pro-preview-0514",
            "gemini-1.5-flash-preview-0514",
            "gemini-1.5-pro-001",
            "gemini-1.5-pro-002",
            "gemini-1.5-flash-001",
            "gemini-1.5-flash-002",
            "gemini-2.0-flash-exp",
            "gemini-2.0-flash-001",
            "gemini-2.0-flash-lite-001",
        ]
    ] = None,
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None,
    max_iterations: int = 300
)

Gemini text generator LLM model.

Methods

__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

fit

fit(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
) -> bigframes.ml.llm.GeminiTextGenerator

Fine tune GeminiTextGenerator model. Only support "gemini-1.5-pro-002", "gemini-1.5-flash-002", "gemini-2.0-flash-001", and "gemini-2.0-flash-lite-001"models for now.

Returns
Type Description
GeminiTextGenerator Fitted estimator.

get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

Parameter
Name Description
deep bool, default True

Default True. If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
Type Description
Dictionary A dictionary of parameter names mapped to their values.

predict

predict(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    *,
    temperature: float = 0.9,
    max_output_tokens: int = 8192,
    top_k: int = 40,
    top_p: float = 1.0,
    ground_with_google_search: bool = False,
    max_retries: int = 0,
    prompt: typing.Optional[
        typing.Iterable[typing.Union[str, bigframes.series.Series]]
    ] = None,
    output_schema: typing.Optional[typing.Mapping[str, str]] = None
) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

Returns
Type Description
bigframes.dataframe.DataFrame DataFrame of shape (n_samples, n_input_columns + n_prediction_columns). Returns predicted values.

score

score(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    task_type: typing.Literal[
        "text_generation", "classification", "summarization", "question_answering"
    ] = "text_generation",
) -> bigframes.dataframe.DataFrame

Calculate evaluation metrics of the model. Only support "gemini-1.5-pro-002", "gemini-1.5-flash-002", "gemini-2.0-flash-lite-001", and "gemini-2.0-flash-001".

Output matches that of the BigQuery ML.EVALUATE function. See: https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-evaluate#remote-model-llm for the outputs relevant to this model type.

Returns
Type Description
bigframes.dataframe.DataFrame The DataFrame as evaluation result.

to_gbq

to_gbq(
    model_name: str, replace: bool = False
) -> bigframes.ml.llm.GeminiTextGenerator

Save the model to BigQuery.

Returns
Type Description
GeminiTextGenerator Saved model.