支持 Live API 的模型内置了使用以下工具的功能:
如需启用特定工具以在返回的响应中使用,请在初始化模型时在 tools
列表中添加该工具的名称。以下部分提供了示例,说明如何在代码中使用每种内置工具。
支持的模型
您可以将 Live API 与以下模型搭配使用:
模型版本 | 可用性等级 |
---|---|
gemini-live-2.5-flash |
非公开正式版 GA* |
gemini-live-2.5-flash-preview-native-audio |
公开预览版 |
*请与您的 Google 客户支持团队代表联系,申请访问权限。
函数调用
使用函数调用创建函数的说明,然后在请求中将该说明传递给模型。模型的响应包括与说明匹配的函数名称以及调用该函数的参数。
必须在会话开始时声明所有函数,方法是将工具定义作为 LiveConnectConfig
消息的一部分发送。
如需启用函数调用,请在 tools
列表中添加 function_declarations
:
Gen AI SDK for Python
import asyncio from google import genai from google.genai import types client = genai.Client( vertexai=True, project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION, ) model = "gemini-live-2.5-flash" # Simple function definitions turn_on_the_lights = {"name": "turn_on_the_lights"} turn_off_the_lights = {"name": "turn_off_the_lights"} tools = [{"function_declarations": [turn_on_the_lights, turn_off_the_lights]}] config = {"response_modalities": ["TEXT"], "tools": tools} async def main(): async with client.aio.live.connect(model=model, config=config) as session: prompt = "Turn on the lights please" await session.send_client_content(turns={"parts": [{"text": prompt}]}) async for chunk in session.receive(): if chunk.server_content: if chunk.text is not None: print(chunk.text) elif chunk.tool_call: function_responses = [] for fc in tool_call.function_calls: function_response = types.FunctionResponse( name=fc.name, response={ "result": "ok" } # simple, hard-coded function response ) function_responses.append(function_response) await session.send_tool_response(function_responses=function_responses) if __name__ == "__main__": asyncio.run(main())
WebSockets
代码执行
您可以将代码执行功能与 Live API 搭配使用,直接生成和执行 Python 代码。如需为响应启用代码执行,请在 tools
列表中添加 code_execution
:
Gen AI SDK for Python
import asyncio from google import genai from google.genai import types client = genai.Client( vertexai=True, project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION, ) model = "gemini-live-2.5-flash" tools = [{'code_execution': {}}] config = {"response_modalities": ["TEXT"], "tools": tools} async def main(): async with client.aio.live.connect(model=model, config=config) as session: prompt = "Compute the largest prime palindrome under 100000." await session.send_client_content(turns={"parts": [{"text": prompt}]}) async for chunk in session.receive(): if chunk.server_content: if chunk.text is not None: print(chunk.text) model_turn = chunk.server_content.model_turn if model_turn: for part in model_turn.parts: if part.executable_code is not None: print(part.executable_code.code) if part.code_execution_result is not None: print(part.code_execution_result.output) if __name__ == "__main__": asyncio.run(main())
使用 Google 搜索建立依据
您可以将 Grounding with Google Search 与 Live API 搭配使用,方法是将 google_search
添加到 tools
列表中:
Gen AI SDK for Python
import asyncio from google import genai from google.genai import types client = genai.Client( vertexai=True, project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION, ) model = "gemini-live-2.5-flash" tools = [{'google_search': {}}] config = {"response_modalities": ["TEXT"], "tools": tools} async def main(): async with client.aio.live.connect(model=model, config=config) as session: prompt = "When did the last Brazil vs. Argentina soccer match happen?" await session.send_client_content(turns={"parts": [{"text": prompt}]}) async for chunk in session.receive(): if chunk.server_content: if chunk.text is not None: print(chunk.text) # The model might generate and execute Python code to use Search model_turn = chunk.server_content.model_turn if model_turn: for part in model_turn.parts: if part.executable_code is not None: print(part.executable_code.code) if part.code_execution_result is not None: print(part.code_execution_result.output) if __name__ == "__main__": asyncio.run(main())
依托 Vertex AI RAG Engine(预览版)进行接地
您可以将 Vertex AI RAG 引擎与 Live API 搭配使用,以对上下文进行基准化、存储和检索:
from google import genai
from google.genai import types
from google.genai.types import (Content, LiveConnectConfig, HttpOptions, Modality, Part)
from IPython import display
PROJECT_ID=YOUR_PROJECT_ID
LOCATION=YOUR_LOCATION
TEXT_INPUT=YOUR_TEXT_INPUT
MODEL_NAME="gemini-live-2.5-flash"
client = genai.Client(
vertexai=True,
project=PROJECT_ID,
location=LOCATION,
)
rag_store=types.VertexRagStore(
rag_resources=[
types.VertexRagStoreRagResource(
rag_corpus=<Your corpus resource name> # Use memory corpus if you want to store context.
)
],
# Set `store_context` to true to allow Live API sink context into your memory corpus.
store_context=True
)
async with client.aio.live.connect(
model=MODEL_NAME,
config=LiveConnectConfig(response_modalities=[Modality.TEXT],
tools=[types.Tool(
retrieval=types.Retrieval(
vertex_rag_store=rag_store))]),
) as session:
text_input=TEXT_INPUT
print("> ", text_input, "\n")
await session.send_client_content(
turns=Content(role="user", parts=[Part(text=text_input)])
)
async for message in session.receive():
if message.text:
display.display(display.Markdown(message.text))
continue
如需了解详情,请参阅在 Gemini Live API 中使用 Vertex AI RAG Engine。
(公开预览版)原生音频
Gemini 2.5 Flash with Live API 引入了原生音频功能,增强了标准 Live API 功能。原生音频通过 24 种语言的 30 种 HD 语音,提供更丰富、更自然的语音互动。它还包含两项仅适用于原生音频的新功能: 主动音频和 情感对话。
使用主动音频
主动音频可让模型仅在相关时做出回应。启用此功能后,该模型会主动生成文本转写和音频回答,但仅针对指向设备的查询。系统会忽略非设备定向查询。
如需使用主动式音频,请在设置消息中配置 proactivity
字段,并将 proactive_audio
设置为 true
:
Gen AI SDK for Python
config = LiveConnectConfig( response_modalities=["AUDIO"], proactivity=ProactivityConfig(proactive_audio=True), )
使用共情对话
借助情感对话功能,使用 Live API 原生音频的模型可以更好地理解用户的情感表达并做出适当的回应,从而实现更细致的对话。
如需启用情感对话功能,请在设置消息中将 enable_affective_dialog
设置为 true
:
Gen AI SDK for Python
config = LiveConnectConfig( response_modalities=["AUDIO"], enable_affective_dialog=True, )
更多信息
如需详细了解如何使用 Live API,请参阅: