Vertex AI Agent Engine でエージェントを開発してデプロイする

このページでは、次のエージェント フレームワークを使用して、指定した日付の 2 つの通貨間の為替レートを返すエージェントを作成してデプロイする方法について説明します。

始める前に

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Vertex AI and Cloud Storage APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the Vertex AI and Cloud Storage APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  8. Vertex AI Agent Engine の使用に必要な権限を取得するには、プロジェクトに対する次の IAM ロールを付与するよう管理者に依頼してください。

    ロールの付与については、プロジェクト、フォルダ、組織へのアクセス権の管理をご覧ください。

    必要な権限は、カスタムロールや他の事前定義ロールから取得することもできます。

    Vertex AI SDK for Python をインストールして初期化する

    1. 次のコマンドを実行して、Vertex AI SDK for Python とその他の必要なパッケージをインストールします。

      ADK

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,adk]>=1.112

      LangGraph

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112

      LangChain

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112

      AG2

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,ag2]>=1.112

      LlamaIndex

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,llama_index]>=1.112
    2. ユーザーとして認証します。

      Colab

      次のコードを実行します。

      from google.colab import auth
      
      auth.authenticate_user(project_id="PROJECT_ID")
      

      Cloud Shell

      対応は不要です。

      ローカルシェル

      次のコマンドを実行します。

      gcloud auth application-default login
    3. 次のコードを実行して、Vertex AI Agent Engine をインポートし、SDK を初期化します。

      import vertexai
      
      client = vertexai.Client(
          project="PROJECT_ID",               # Your project ID.
          location="LOCATION",                # Your cloud region.
      )
      

      ここで

    エージェントを開発する

    まず、ツールを開発します。

    def get_exchange_rate(
        currency_from: str = "USD",
        currency_to: str = "EUR",
        currency_date: str = "latest",
    ):
        """Retrieves the exchange rate between two currencies on a specified date."""
        import requests
    
        response = requests.get(
            f"https://api.frankfurter.app/{currency_date}",
            params={"from": currency_from, "to": currency_to},
        )
        return response.json()
    

    次に、エージェントをインスタンス化します。

    ADK

    from google.adk.agents import Agent
    from vertexai import agent_engines
    
    agent = Agent(
        model="gemini-2.0-flash",
        name='currency_exchange_agent',
        tools=[get_exchange_rate],
    )
    
    app = agent_engines.AdkApp(agent=agent)
    

    LangGraph

    from vertexai import agent_engines
    
    agent = agent_engines.LanggraphAgent(
        model="gemini-2.0-flash",
        tools=[get_exchange_rate],
        model_kwargs={
            "temperature": 0.28,
            "max_output_tokens": 1000,
            "top_p": 0.95,
        },
    )
    

    LangChain

    from vertexai import agent_engines
    
    agent = agent_engines.LangchainAgent(
        model="gemini-2.0-flash",
        tools=[get_exchange_rate],
        model_kwargs={
            "temperature": 0.28,
            "max_output_tokens": 1000,
            "top_p": 0.95,
        },
    )
    

    AG2

    from vertexai import agent_engines
    
    agent = agent_engines.AG2Agent(
        model="gemini-2.0-flash",
        runnable_name="Get Exchange Rate Agent",
        tools=[get_exchange_rate],
    )
    

    LlamaIndex

    from vertexai.preview import reasoning_engines
    
    def runnable_with_tools_builder(model, runnable_kwargs=None, **kwargs):
        from llama_index.core.query_pipeline import QueryPipeline
        from llama_index.core.tools import FunctionTool
        from llama_index.core.agent import ReActAgent
    
        llama_index_tools = []
        for tool in runnable_kwargs.get("tools"):
            llama_index_tools.append(FunctionTool.from_defaults(tool))
        agent = ReActAgent.from_tools(llama_index_tools, llm=model, verbose=True)
        return QueryPipeline(modules = {"agent": agent})
    
    agent = reasoning_engines.LlamaIndexQueryPipelineAgent(
        model="gemini-2.0-flash",
        runnable_kwargs={"tools": [get_exchange_rate]},
        runnable_builder=runnable_with_tools_builder,
    )
    

    最後に、エージェントをローカルでテストします。

    ADK

    async for event in app.async_stream_query(
        user_id="USER_ID",
        message="What is the exchange rate from US dollars to SEK today?",
    ):
        print(event)
    
    • USER_ID: 128 文字以内でユーザー ID を選択します。例: user-123

    LangGraph

    agent.query(input={"messages": [
        ("user", "What is the exchange rate from US dollars to SEK today?"),
    ]})
    

    LangChain

    agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    AG2

    agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    LlamaIndex

    agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    エージェントをデプロイする

    エージェントをデプロイするには:

    ADK

    remote_agent = client.agent_engines.create(
        agent=app,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,adk]"],
        }
    )
    

    LangGraph

    remote_agent = client.agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
        },
    )
    

    LangChain

    remote_agent = client.agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
        },
    )
    

    AG2

    from vertexai import agent_engines
    
    remote_agent = agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,ag2]"],
        },
    )
    

    LlamaIndex

    from vertexai import agent_engines
    
    remote_agent = agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,llama_index]"],
        },
    )
    

    これにより、Vertex AI に reasoningEngine リソースが作成されます。

    エージェントを使用する

    クエリを送信して、デプロイしたエージェントをテストします。

    ADK

    async for event in remote_agent.async_stream_query(
        user_id="USER_ID",
        message="What is the exchange rate from US dollars to SEK today?",
    ):
        print(event)
    

    ここで、USER_ID は、エージェントをローカルでテストするときに定義したユーザー ID です。例: currency-exchange

    LangGraph

    remote_agent.query(input={"messages": [
        ("user", "What is the exchange rate from US dollars to SEK today?"),
    ]})
    

    LangChain

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    AG2

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    LlamaIndex

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    クリーンアップ

    このページで使用したリソースについて、 Google Cloud アカウントに課金されないようにするには、次の手順で操作します。

    remote_agent.delete(force=True)
    

    次のステップ