Vertex AI Agent Engine でエージェントを開発してデプロイする
このページでは、次のエージェント フレームワークを使用して、指定した日付の 2 つの通貨間の為替レートを返すエージェントを作成してデプロイする方法について説明します。
始める前に
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI and Cloud Storage APIs.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI and Cloud Storage APIs.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
Vertex AI ユーザー(
roles/aiplatform.user
) - ストレージ管理者(
roles/storage.admin
) 次のコマンドを実行して、Vertex AI SDK for Python とその他の必要なパッケージをインストールします。
ADK
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,adk]>=1.112
LangGraph
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112
LangChain
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112
AG2
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,ag2]>=1.112
LlamaIndex
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,llama_index]>=1.112
ユーザーとして認証します。
Colab
次のコードを実行します。
from google.colab import auth auth.authenticate_user(project_id="PROJECT_ID")
Cloud Shell
対応は不要です。
ローカルシェル
次のコマンドを実行します。
gcloud auth application-default login
次のコードを実行して、Vertex AI Agent Engine をインポートし、SDK を初期化します。
import vertexai client = vertexai.Client( project="PROJECT_ID", # Your project ID. location="LOCATION", # Your cloud region. )
ここで
LOCATION
は、サポートされているリージョンの一つです。
- USER_ID: 128 文字以内でユーザー ID を選択します。例:
user-123
Vertex AI Agent Engine の使用に必要な権限を取得するには、プロジェクトに対する次の IAM ロールを付与するよう管理者に依頼してください。
ロールの付与については、プロジェクト、フォルダ、組織へのアクセス権の管理をご覧ください。
必要な権限は、カスタムロールや他の事前定義ロールから取得することもできます。
Vertex AI SDK for Python をインストールして初期化する
エージェントを開発する
まず、ツールを開発します。
def get_exchange_rate(
currency_from: str = "USD",
currency_to: str = "EUR",
currency_date: str = "latest",
):
"""Retrieves the exchange rate between two currencies on a specified date."""
import requests
response = requests.get(
f"https://api.frankfurter.app/{currency_date}",
params={"from": currency_from, "to": currency_to},
)
return response.json()
次に、エージェントをインスタンス化します。
ADK
from google.adk.agents import Agent
from vertexai import agent_engines
agent = Agent(
model="gemini-2.0-flash",
name='currency_exchange_agent',
tools=[get_exchange_rate],
)
app = agent_engines.AdkApp(agent=agent)
LangGraph
from vertexai import agent_engines
agent = agent_engines.LanggraphAgent(
model="gemini-2.0-flash",
tools=[get_exchange_rate],
model_kwargs={
"temperature": 0.28,
"max_output_tokens": 1000,
"top_p": 0.95,
},
)
LangChain
from vertexai import agent_engines
agent = agent_engines.LangchainAgent(
model="gemini-2.0-flash",
tools=[get_exchange_rate],
model_kwargs={
"temperature": 0.28,
"max_output_tokens": 1000,
"top_p": 0.95,
},
)
AG2
from vertexai import agent_engines
agent = agent_engines.AG2Agent(
model="gemini-2.0-flash",
runnable_name="Get Exchange Rate Agent",
tools=[get_exchange_rate],
)
LlamaIndex
from vertexai.preview import reasoning_engines
def runnable_with_tools_builder(model, runnable_kwargs=None, **kwargs):
from llama_index.core.query_pipeline import QueryPipeline
from llama_index.core.tools import FunctionTool
from llama_index.core.agent import ReActAgent
llama_index_tools = []
for tool in runnable_kwargs.get("tools"):
llama_index_tools.append(FunctionTool.from_defaults(tool))
agent = ReActAgent.from_tools(llama_index_tools, llm=model, verbose=True)
return QueryPipeline(modules = {"agent": agent})
agent = reasoning_engines.LlamaIndexQueryPipelineAgent(
model="gemini-2.0-flash",
runnable_kwargs={"tools": [get_exchange_rate]},
runnable_builder=runnable_with_tools_builder,
)
最後に、エージェントをローカルでテストします。
ADK
async for event in app.async_stream_query(
user_id="USER_ID",
message="What is the exchange rate from US dollars to SEK today?",
):
print(event)
LangGraph
agent.query(input={"messages": [
("user", "What is the exchange rate from US dollars to SEK today?"),
]})
LangChain
agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
AG2
agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
LlamaIndex
agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
エージェントをデプロイする
エージェントをデプロイするには:
ADK
remote_agent = client.agent_engines.create(
agent=app,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,adk]"],
}
)
LangGraph
remote_agent = client.agent_engines.create(
agent,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
},
)
LangChain
remote_agent = client.agent_engines.create(
agent,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
},
)
AG2
from vertexai import agent_engines
remote_agent = agent_engines.create(
agent,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,ag2]"],
},
)
LlamaIndex
from vertexai import agent_engines
remote_agent = agent_engines.create(
agent,
config={
"requirements": ["google-cloud-aiplatform[agent_engines,llama_index]"],
},
)
これにより、Vertex AI に reasoningEngine
リソースが作成されます。
エージェントを使用する
クエリを送信して、デプロイしたエージェントをテストします。
ADK
async for event in remote_agent.async_stream_query(
user_id="USER_ID",
message="What is the exchange rate from US dollars to SEK today?",
):
print(event)
ここで、USER_ID は、エージェントをローカルでテストするときに定義したユーザー ID です。例: currency-exchange
LangGraph
remote_agent.query(input={"messages": [
("user", "What is the exchange rate from US dollars to SEK today?"),
]})
LangChain
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
AG2
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
LlamaIndex
remote_agent.query(
input="What is the exchange rate from US dollars to SEK today?"
)
クリーンアップ
このページで使用したリソースについて、 Google Cloud アカウントに課金されないようにするには、次の手順で操作します。
remote_agent.delete(force=True)