Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Neste tutorial, mostramos como treinar o modelo ResNet-50 em um dispositivo Cloud TPU com PyTorch. É possível aplicar o mesmo padrão a outros modelos de classificação de imagem otimizados para TPU que usam o PyTorch e o conjunto de dados do ImageNet.
O modelo deste tutorial é baseado no artigo Deep Residual Learning for Image Recognition, que foi o primeiro a apresentar a arquitetura de rede residual ou ResNet. O tutorial usa a variante de 50 camadas, ResNet-50, e demonstra o treinamento do modelo usando PyTorch/XLA.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-10-19 UTC."],[],[]]