Class MultimodalEmbeddingGenerator (2.29.0)

MultimodalEmbeddingGenerator(
    *,
    model_name: typing.Optional[typing.Literal["multimodalembedding@001"]] = None,
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None
)

Multimodal embedding generator LLM model.

Methods

__repr__

__repr__()

Print the estimator's constructor with all non-default parameter values.

get_params

get_params(deep: bool = True) -> typing.Dict[str, typing.Any]

Get parameters for this estimator.

Parameter
Name Description
deep bool, default True

Default True. If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
Type Description
Dictionary A dictionary of parameter names mapped to their values.

predict

predict(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    *,
    max_retries: int = 0
) -> bigframes.dataframe.DataFrame

Predict the result from input DataFrame.

Returns
Type Description
bigframes.dataframe.DataFrame DataFrame of shape (n_samples, n_input_columns + n_prediction_columns). Returns predicted values.

to_gbq

to_gbq(
    model_name: str, replace: bool = False
) -> bigframes.ml.llm.MultimodalEmbeddingGenerator

Save the model to BigQuery.

Returns
Type Description
MultimodalEmbeddingGenerator Saved model.