使用 tpu-info CLI 进行监控

tpu-info CLI 是一种用于检测 Cloud TPU 设备并从 libtpu 库读取运行时指标(包括内存用量和占空比)的工具。它支持静态、一次性快照和实时流式传输,以持续监控指标。

安装

使用 pip 安装最新版本:

pip install tpu-info

或者,从源代码安装 tpu-info

pip install git+https://github.com/google/cloud-accelerator-diagnostics/#subdirectory=tpu_info

如果您已安装某个版本的 tpu-info,请确保该版本与您的环境兼容,并且不缺少任何指标和功能。 如需了解详情,请参阅缺少功能或指标

使用 CLI 访问标准 LibTPU 指标

使用以下命令通过 CLI 查看默认的 tpu-info 指标:

tpu-info

输出类似于以下内容:

TPU Chips
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━┓
┃ Chip          Type          Devices  PID    ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╕━━━━━━━━━╕━━━━━━━━┩
│ /dev/vfio/0   TPU v6e chip  1        1052   │
│ /dev/vfio/1   TPU v6e chip  1        1052   │
│ /dev/vfio/2   TPU v6e chip  1        1052   │
│ /dev/vfio/3   TPU v6e chip  1        1052   │
└──────────────┴──────────────┴─────────┴────────┘
TPU Runtime Utilization
┏━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Chip    HBM usage                 Duty cycle ┃
┡━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╕━━━━━━━━━━━━┩
│ 8       18.45 GiB / 31.25 GiB        100.00% │
│ 9       10.40 GiB / 31.25 GiB        100.00% │
│ 12      10.40 GiB / 31.25 GiB        100.00% │
│ 13      10.40 GiB / 31.25 GiB        100.00% │
└────────┴──────────────────────────┴────────────┘
TensorCore Utilization
┏━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Core ID  TensorCore Utilization ┃
┡━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━┩
│ 0                         13.60%│
│ 1                         14.81%│
│ 2                         14.36%│
│ 3                         13.60%│
└─────────┴────────────────────────┘
TPU Buffer Transfer Latency
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┓
┃ Buffer Size   P50           P90           P95           P999         ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╕━━━━━━━━━━━━━━╕━━━━━━━━━━━━━━╕━━━━━━━━━━━━━━┩
│ 8MB+          108978.82 us  164849.81 us  177366.42 us  212419.07 us │
│ 4MB+          21739.38 us   38126.84 us   42110.12 us   55474.21 us  │
└──────────────┴──────────────┴──────────────┴──────────────┴──────────────┘
TPU gRPC TCP Minimum RTT
┏━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┓
┃ P50       P90       P95       P999     ┃
┡━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━┩
│ 35.99 us  52.15 us  53.83 us  55.51 us │
└──────────┴──────────┴──────────┴──────────┘
TPU gRPC TCP Delivery Rate
┏━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ P50            P90            P95            P999          ┃
┡━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ 12305.96 Mbps  18367.10 Mbps  24872.11 Mbps  44841.55 Mbps │
└───────────────┴───────────────┴───────────────┴───────────────┘

用量

如需查看当前的 TPU 利用率数据,tpu-info 需要具有受支持的机器学习框架(例如 JAX 或 PyTorch/XLA)的运行中 TPU 工作负载。您可以在终端中运行 tpu-info 命令,并使用以下标志。

流程

使用 --process-p 标志可显示有关在 TPU 上运行的进程的信息。

$ tpu-info --process

输出应类似如下所示:

TPU Process Info
┏━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━┓
┃ Chip        ┃ PID    ┃ Process Name ┃
┡━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━┩
│ /dev/vfio/0 │ 799657 │ python3      │
│ /dev/vfio/1 │ 799657 │ python3      │
│ /dev/vfio/2 │ 799657 │ python3      │
│ /dev/vfio/3 │ 799657 │ python3      │
│ /dev/vfio/4 │ 799657 │ python3      │
│ /dev/vfio/5 │ 799657 │ python3      │
│ /dev/vfio/6 │ 799657 │ python3      │
│ /dev/vfio/7 │ 799657 │ python3      │
└─────────────┴────────┴──────────────┘

指标

使用 --metric 标志可显示特定指标。您可以指定多个指标,以空格分隔。以下是一些常见的受支持指标:

  • hbm_usage
  • duty_cycle_percent
  • tensorcore_utilization
  • buffer_transfer_latency
  • host_to_device_transfer_latency
  • device_to_host_transfer_latency
  • collective_e2e_latency
$ tpu-info --metric duty_cycle_percent hbm_usage

输出应类似如下所示:

TPU Duty Cycle
┏━━━━━━━━━┳━━━━━━━━━━━━━━━━┓
┃ Core ID ┃ Duty Cycle (%) ┃
┡━━━━━━━━━╇━━━━━━━━━━━━━━━━┩
│ 0       │ 100.00%        │
│ 1       │ 100.00%        │
│ 2       │ 100.00%        │
│ 3       │ 100.00%        │
│ 4       │ 100.00%        │
│ 5       │ 100.00%        │
│ 6       │ 100.00%        │
│ 7       │ 100.00%        │
└─────────┴────────────────┘
TPU HBM Usage
┏━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Chip   ┃ HBM Usage (GiB)       ┃
┡━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━┩
│ 0      │ 29.50 GiB / 31.25 GiB │
│ 1      │ 21.50 GiB / 31.25 GiB │
│ 2      │ 21.50 GiB / 31.25 GiB │
│ 3      │ 21.50 GiB / 31.25 GiB │
│ 4      │ 21.50 GiB / 31.25 GiB │
│ 5      │ 21.50 GiB / 31.25 GiB │
│ 6      │ 21.50 GiB / 31.25 GiB │
│ 7      │ 21.50 GiB / 31.25 GiB │
└────────┴───────────────────────┘

列出指标

使用 --list_metrics 标志可显示所有支持的指标,这些指标可通过 --metric 标志请求。

$ tpu-info --list_metrics

输出应类似如下所示:

╭─ Supported Metrics ─────────────────────────────────────────────────────────────────────────────╮
│         grpc_tcp_min_rtt                                                                        │
│         host_to_device_transfer_latency                                                         │
│         grpc_tcp_delivery_rate                                                                  │
│         buffer_transfer_latency                                                                 │
│         collective_e2e_latency                                                                  │
│         device_to_host_transfer_latency                                                         │
│         hbm_usage                                                                               │
│         duty_cycle_percent                                                                      │
│         tensorcore_utilization                                                                  │
╰─────────────────────────────────────────────────────────────────────────────────────────────────╯

流式传输指标

在流式传输模式下,系统会定期刷新并显示最新的利用率统计信息。如需流式传输 LibTPU 指标,请将 --streaming 标志添加到 tpu-info 命令。使用 --rate 标志可控制流式传输的频率(以秒为单位)。

使用以下命令通过 CLI 流式传输默认的 tpu-info 指标:

# Refresh metrics every 2 seconds
tpu-info --streaming --rate 2

输出类似于以下内容:

Refresh rate: 0.1s
Last update: 2025-07-24 11:00:59 UTC
Libtpu version: 0.0.19.dev20250721+nightly
Accelerator type: v6e

TPU Chips
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━┓
┃ Chip         ┃ Type         ┃ Devices ┃ PID    ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╢━━━━━━━━━╢━━━━━━━━┪
│ /dev/vfio/0  │ TPU v6e chip │ 1       │ 1022   │
│ /dev/vfio/1  │ TPU v6e chip │ 1       │ 1022   │
│ /dev/vfio/2  │ TPU v6e chip │ 1       │ 1022   │
│ /dev/vfio/3  │ TPU v6e chip │ 1       │ 1022   │
└──────────────┴──────────────┴─────────┴────────┘
TPU Runtime Utilization
┏━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Chip   ┃ HBM usage                ┃ Duty cycle ┃
┡━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╕━━━━━━━━━━━━┩
│ 8      │ 17.26 GiB / 31.25 GiB    │    100.00% │
│ 9      │  9.26 GiB / 31.25 GiB    │    100.00% │
│ 12     │  9.26 GiB / 31.25 GiB    │    100.00% │
│ 13     │  9.26 GiB / 31.25 GiB    │    100.00% │
└────────┴──────────────────────────┴────────────┘
TensorCore Utilization
┏━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Core ID ┃ TensorCore Utilization ┃
┡━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━┩
│ 0       │                  15.17%│
│ 1       │                  14.62%│
│ 2       │                  14.68%│
│ 3       │                  15.14%│
└─────────┴────────────────────────┘
TPU Buffer Transfer Latency
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━┓
┃ Buffer Size  ┃ P50          ┃ P90          ┃ P95          ┃ P999         ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━╕━━━━━━━━━━━━━━╕━━━━━━━━━━━━━━╕━━━━━━━━━━━━━━┩
│ 8MB+         │ 18264.03 us  │ 33263.06 us  │ 35990.98 us  │ 53997.32 us  │
└──────────────┴──────────────┴──────────────┴──────────────┴──────────────┘
TPU gRPC TCP Minimum RTT
┏━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━┓
┃ P50      ┃ P90      ┃ P95      ┃ P999     ┃
┡━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━┩
│ 35.99 us │ 52.15 us │ 53.83 us │ 55.51 us │
└──────────┴──────────┴──────────┴──────────┘
TPU gRPC TCP Delivery Rate
┏━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ P50           ┃ P90           ┃ P95           ┃ P999          ┃
┡━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ 12305.96 Mbps │ 18367.10 Mbps │ 24872.11 Mbps │ 44841.55 Mbps │
└───────────────┴───────────────┴───────────────┴───────────────┘

TPU-Z 指标

TPU-Z 是 TPU 的遥测和调试工具。它可提供连接到主机的所有 TPU 核心的详细运行时状态信息。该功能通过 tpuz 模块(即 libtpu Python SDK 中 libtpu.sdk 模块的一部分)提供。该模块提供每个核心的状态快照。

TPU-Z 的主要应用场景是诊断分布式 TPU 工作负载中的挂起或死锁。您可以查询主机上的 TPU-Z 服务,以捕获每个核心的状态,比较所有核心的程序计数器、HLO 位置和运行 ID,以识别异常情况。

使用以下命令通过 CLI 查看 TPU-Z 指标:

tpu-info --metric core_state
tpu-info --metric sequencer_state
tpu-info --metric sequencer_state_detailed
tpu-info --metric queued_program

输出应包含 core_statesequencer_statesequencer_state_detailedqueued_programs 表。

核心状态信息

核心状态信息 (core_state) 表提供有关给定芯片的核心的信息。TPU 的每个芯片具有一个或两个核心,具体取决于世代。

字段 说明 示例值
芯片 ID 核心所属芯片的 ID。 0
全局核心 ID 整个 TPU 系统中的核心的唯一 ID。 1
核心类型 TPU 核心的类型。 "TPU_CORE_TYPE_TENSOR_CORE"
"TPU_CORE_TYPE_SPARSE_CORE"
xdb 服务器正在运行 指示加速器调试器 (XDB) 服务器是否正在特定 TPU 核心上运行。 True

输出应如下表所示:

Core Information
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Chip ID      ┃ Global Core ID┃ Core Type                   ┃ xdb Server    ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ 0            │ 0             │ TPU_CORE_TYPE_TENSOR_CORE   │ True          │
│ 0            │ 1             │ TPU_CORE_TYPE_SPARSE_CORE   │ True          │
│ 1            │ 2             │ TPU_CORE_TYPE_SPARSE_CORE   │ False         │
│ 1            │ 3             │ TPU_CORE_TYPE_SPARSE_CORE   │ False         │
│ 2            │ 4             │ TPU_CORE_TYPE_SPARSE_CORE   │ True          │
│ 2            │ 5             │ TPU_CORE_TYPE_SPARSE_CORE   │ True          │
└──────────────┴───────────────┴─────────────────────────────┴───────────────┘

序列器状态信息

序列器状态信息 (sequencer_state) 表提供有关核心上的序列器状态的信息。序列器是 TPU 核心中的一个控制单元,负责提取、解码和编排指令的执行。单个核心可以有多个序列器。

指标 说明 示例值
芯片 ID 核心所属芯片的 ID。 0
全局核心 ID 整个 TPU 系统中的核心的唯一 ID。 1
程序计数器 序列器要执行的指令的内存地址。 15390
Tracemark 当前或最新程序的启动 ID。 如果不适用,则此字段不存在。 2147483647
程序 ID 与要启动以在 TPU 核心上执行的特定程序实例关联的 ID。 3230481660274331500
运行 ID 与该程序关联的运行 ID。 1150
序列类型 序列器的类型。 "TPU_SEQUENCER_TYPE_SPARSE_CORE_SEQUENCER"
"TPU_SEQUENCER_TYPE_SPARSE_CORE_TILE_EXECUTE_CORE_SEQUENCER"

输出应如下表所示:

Sequencer Info
┏━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Chip ┃ Global┃ Program       ┃ Tracemark     ┃ Program ID    ┃ Run   ┃ Sequence Type                  ┃
┃ ID   ┃ Core  ┃ Counter:Tag   ┃               ┃               ┃ ID    ┃                                ┃
┡━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ 0    │ 0     │ 760:1         │ 2147483647    │ -5.75e17      │ 1150  │ TPU_SEQ_SPARSE_CORE_SEQUENCER  │
│ 0    │ 1     │ 9:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 0    │ 1     │ 0:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 1    │ 2     │ 9:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 1    │ 3     │ 0:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 1    │ 3     │ 9:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 1    │ 3     │ 0:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 2    │ 4     │ 9:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 2    │ 4     │ 0:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 2    │ 4     │ 9:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 2    │ 5     │ 9:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
│ 2    │ 5     │ 0:0           │ 0             │ -1            │ -1    │ TPU_SEQ_SPARSE_TILE_EXECUTE    │
└━━━━━━┴━━━━━━━┴━━━━━━━━━━━━━━━┴━━━━━━━━━━━━━━━┴━━━━━━━━━━━━━━━┴━━━━━━━┴────────────────────────────────┘

序列器状态信息(详细)

序列器状态信息(详细)(sequencer_state_detailed) 表提供序列器状态信息 (sequencer_state) 表中的所有信息,以及以下其他指标:

指标 说明 示例值
HLO 详细信息 详细的 HLO 信息(如果有)。 []
已排队程序的运行 ID 相应已排队程序的运行 ID。 81
已排队程序的启动 ID 相应已排队程序的启动 ID。 1394130914
核心错误 包含相应核心的任何错误消息。如果没有错误,则此字段不存在。 "Failed to parse launch id: 0xdcf36153"
HLO 位置 高级优化器 (HLO) 的位置信息。 "no HLO mapping"
"HLO: fusion.11; HLO computation: main.126_spmd"

输出应如下表所示:

Sequencer States (Detailed)
┏━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ Chip ID ┃ Global Core ID ┃ Program Counter ┃ Tracemark  ┃ Program ID           ┃ Run ID ┃ Sequence Type                            ┃ Core Error                               ┃ HLO Location   ┃ HLO Details ┃
┡━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ 0       │ 0              │ 760             │ 2147483647 │ -5752110712385440928 │ 114    │ TPU_SEQUENCER_TYPE_TENSOR_CORE_SEQUENCER │ Failed to parse launch id: 0xdcf36109    │ no HLO mapping │ []          │
│ 0       │ 1              │ 9               │ 0          │ -1                   │ -1     │ TPU_SEQUENCER_TYPE_SPARSE_CORE_SEQUENCER │ Compiler metadata or executable          │ None           │ None        │
│         │                │                 │            │                      │        │                                          │ fingerprint not found.                   │                │             │
│ 0       │ 1              │ 0               │ 0          │ -1                   │ -1     │ TPU_SEQUENCER_TYPE_SPARSE_CORE_TILE_EXE… │ Compiler metadata or executable          │ None           │ None        │
│         │                │                 │            │                      │        │                                          │ fingerprint not found.                   │                │             │
│ 0       │ 1              │ 0               │ 0          │ -1                   │ -1     │ TPU_SEQUENCER_TYPE_SPARSE_CORE_TILE_EXE… │ Compiler metadata or executable          │ None           │ None        │
│ ...     │ ...            │                 │ ...        │ ...                  │ ...    │ ...                                      │ ...                                      │...             │ ...         │
└─────────┴────────────────┴─────────────────┴────────────┴──────────────────────┴────────┴──────────────────────────────────────────┴──────────────────────────────────────────┴────────────────┴─────────────┘

已排队的程序

已排队的程序 (queued_programs) 表提供了已排队等待执行的程序列表。

指标 说明 示例值
芯片 ID 核心所属芯片的 ID。 0
全局核心 整个 TPU 系统中的核心的唯一 ID。 1
程序计数器:标记 序列器要执行的指令的内存地址。 15390
Tracemark 当前或最新程序的启动 ID。 如果不适用,则此字段不存在。 2147483647
程序 ID 与要启动以在 TPU 核心上执行的特定程序实例关联的 ID。 3230481660274331500
运行 ID 与该程序关联的运行 ID。 1150
序列类型 序列器的类型。 "\ufffdU\ufffd4j\u7c6e\ufffd\ufffd{\u0017\ufffd\ufffdHHV\ufffdD\ufffde\uff"
Queued Programs
┏━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Chip ┃ Global┃ Program       ┃ Tracemark ┃ Program ID  ┃ Run   ┃ Sequence Type                      ┃
┃ ID   ┃ Core  ┃ Counter:Tag   ┃           ┃             ┃ ID    ┃                                    ┃
┡━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ 0    │ 0     │ 10712385440928│ 1220      │ -5.75e17    │ 1220  │ \ufffdU\...ufffd{\u0017\...\ufffde |
│ 0    │ 1     │ 31435440272417│ 1530      │ -1          │ 1530  │ \ufff4j\...\ufffd{\u0017\...\ufffde|
│ 0    │ 1     │ 10230672051156│ 1410      │ -1          │ 1410  │ \ufffde\...\ufffd{\u0017\...\ufffde|
│ ...  │ ...   │ ...           │ ...       │ ...         │ ...   │ ...                                │
└━━━━━━┴━━━━━━━┴━━━━━━━━━━━━━━━┴━━━━━━━━━━━┴━━━━━━━━━━━━━┴━━━━━━━┴────────────────────────────────────┘

缺少功能或指标

如果您无法查看某些功能或指标,最常见的原因是 libtpu 版本过时。tpu-info 中的功能和指标包含在 libtpu 版本中,过时的版本可能缺少新功能和指标。

如需检查 tpu-info 的版本是否与您的环境兼容,请使用 --version-v 标志:

$ tpu-info --version

以下输出显示了一个兼容的环境示例:

-   tpu-info version: 0.5.1
-   libtpu version: 0.0.18
-   accelerator type: v6e

以下输出显示了一个不兼容的环境示例:

-   tpu-info version: 0.5.1
-   libtpu version: N/A (incompatible environment)
-   accelerator type: N/A (incompatible environment)

如果您使用的是过时版本,请更新到最新版本的 libtpu

pip install --upgrade libtpu