设置 OpenAPI 工具以访问 Datastore

借助 OpenAPI 工具,AI 教练可以根据对话上下文从远程 API 动态检索数据。

准备工作

如果您在使用预先存在的 API 时遇到困难,请使用以下灵活的方法:

  1. 创建 Cloud Run 函数作为现有 API 的封装容器。Cloud Run 函数会填充其他必需参数,并对 API 响应执行后处理。
  2. 创建一个可调用 Cloud Run 函数的 OpenAPI 工具。

虽然 Datastore API 可能需要额外的输入参数(例如设置搜索结果模式),但 Cloud Run 函数只需要一个参数(查询),AI 指导可以从对话上下文中提取该参数。在响应处理方面,Cloud Run 函数仅返回最匹配的结果,而不是所有结果。

请按照以下步骤访问 Datastore。

  1. 按照 Datastore 中的步骤创建 Datastore。
  2. 按照相应步骤创建搜索应用
  3. 使用 API 检查 Datastore 和搜索应用,以验证其解决方案类型、搜索层级以及是否已启用分块。

运行以下命令以检索分块。

gcurl -sX GET \
"https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/dataStores/${data_store_id}/documentProcessingConfig"

以下示例显示了分块已启用。

{
  "name": "projects/${project_id}/locations/global/collections/default_collection/dataStores/${data_store_id}/documentProcessingConfig",
  "chunkingConfig": {
    "layoutBasedChunkingConfig": {
      "chunkSize": 500,
      "includeAncestorHeadings": true
    }
  },
  "defaultParsingConfig": {
    "digitalParsingConfig": {}
  }
}

运行以下命令以检索解决方案类型和搜索层级。

gcurl -X GET \
"https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/engines/${data_store_id}"

以下示例显示了解决方案类型和搜索层级已通过验证。

{
  "name": "projects/${project_id}/locations/global/collections/default_collection/engines/${data_store_id}",
  "displayName": "iphone_",
  "dataStoreIds": [
    "${data_store_id}"
  ],
  "solutionType": "SOLUTION_TYPE_SEARCH",
  "searchEngineConfig": {
    "searchTier": "SEARCH_TIER_ENTERPRISE"
  },
  "commonConfig": {
    "companyName": "Google"
  },
  "industryVertical": "GENERIC"
}

第 2 步:创建 Cloud Run 函数以调用 Datastore

如需进行身份验证,请将 Cloud Run functions 配置为需要身份令牌。Cloud Run functions 有助于将复杂的 API 封装为基本 API。他们执行以下操作:

  1. 填充请求中的其他字段。
  2. 调用 Datastore API 以执行搜索。
  3. 处理 API 响应并返回排名靠前的结果。

创建 Cloud Run functions 后,创建一个 OpenAPI 工具来调用您的 Cloud Run functions。

在以下示例中,Cloud Run 函数会转换 Datastore API 以执行搜索,并为您提供搜索结果列表。

import os
import requests
import google.auth
import google.auth.transport.requests
import functions_framework

@functions_framework.http
def call_vertex_search(request):
  """
  HTTP Cloud Function to invoke a Vertex AI Search endpoint.
  """

  # --- Configuration - Tailor to your Vertex AI Search specifics ---
  project_id = ${project_id}
  engine_id = "${data_store_id}"

  # Establish the Vertex AI Search endpoint URL
  endpoint = f"https://discoveryengine.googleapis.com/v1alpha/projects/${project_id}/locations/global/collections/default_collection/engines/{engine_id}/servingConfigs/default_chat:search"

  # --- Acquire Authentication Token ---
  try:
    credentials, project = google.auth.default()
    auth_req = google.auth.transport.requests.Request()
    credentials.refresh(auth_req)
    token = credentials.token
  except Exception as e:
    print(f"Authentication token retrieval error: {e}")
    return f"Authentication token retrieval error: {e}", 500

  headers = {
      "Authorization": f"Bearer {token}",
      "Content-Type": "application/json",
  }

  # --- Formulate Search Query ---
  # Extract the query from the request; otherwise, employ a default.
  request_json = request.get_json(silent=True)
  query = "what is the price of iphone 13?"  # Default query
  if request_json and 'query' in request_json:
    query = request_json['query']

  payload = {
      "query": query,
      "page_size": 5,
      "content_search_spec": {
          "search_result_mode": "CHUNKS"
      }
      # Additional search parameters, such as filters or boost_spec, can be appended here.
      # "filter": "some_attribute:ANY(\"value\")",
  }

  # --- Execute Vertex AI Search API Call ---
  try:
    response = requests.post(endpoint, headers=headers, json=payload)
    response.raise_for_status()  # Trigger an exception for unfavorable status codes.

    search_results = response.json()
    print(f"Search results: {search_results}")

    extracted_data = search_results["results"][0]["chunk"]["content"]

    if extracted_data is not None:
      print(f"Extracted data: {extracted_data}")
      return {"content": extracted_data}, 200
    else:
      print("Failed to extract search results from the response.")
      return "Failed to extract search results from the response", 404

  except requests.exceptions.RequestException as e:
    print(f"Vertex AI Search invocation error: {e}")
    if e.response is not None:
      print(f"Error details: {e.response.text}")
      return f"Vertex AI Search invocation error: {e.response.text}", e.response.status_code
    return f"Vertex AI Search invocation error: {e}", 500
  except Exception as e:
    print(f"An unanticipated error transpired: {e}")
    return f"An unanticipated error transpired: {e}", 500

使用 Shell 测试 Cloud Run 函数。尝试发送类似“iPhone 13 的价格是多少”的查询,如以下示例所示。

export CLOUDSDK_CORE_PROJECT=${project_id}
curl -H "Authorization: Bearer "$(gcloud auth print-identity-token) -H "X-Goog-User-Project: ${CLOUDSDK_CORE_PROJECT}" -H "Content-Type: application/json; charset=utf-8" -X GET "https://${CLOUD_FUNCTION_ENDPOINT}/?query=what%20is%20the%20price%20of%20iphone%2013"

您应该会收到如下所示的回答:

{"content":"Table of contents\niPhone price history iPhone 4S (2011)\niPhone 4S original starting MSRP: $199\nInflation-adjusted iPhone 4S price: $280\niPhone 5 (2012)\niPhone 5 Original starting MSRP: $199\nInflation-adjusted iPhone 5 price: $276\niPhone 5S/5C (2013) iPhone 5S original starting MSRP: $199\niPhone 5C original starting MSRP: $99\nInflation-adjusted iPhone 5S price: $270\nInflation-adjusted iPhone 5C price: $134\niPhone 6/6 Plus (2014) Table of contents\niPhone price history iPhone 6 original starting MSRP: $199\niPhone 6 Plus original starting MSRP: $299\nInflation-adjusted iPhone 6 price: $266\nInflation-adjusted iPhone 6 Plus price: $398\niPhone 6S/6S Plus (2015)\niPhone 6S original starting MSRP: $199\niPhone 6S Plus original starting MSRP: $299\nInflation-adjusted iPhone 6S price: $265\nInflation-adjusted iPhone 6S Plus price: $397\niPhone 7/7 Plus (2016) Table of contents\niPhone price history iPhone 7 original starting MSRP: $649\niPhone 7 Plus original starting MSRP: $769\nInflation-adjusted iPhone 7 price: $854\nInflation-adjusted iPhone 7 Plus price: $1,011\niPhone 8/8 Plus (2017)\niPhone 8 original starting MSRP: $699\niPhone 8 Plus original starting MSRP: $799\nInflation-adjusted iPhone 8 price: $900\nInflation-adjusted iPhone 8 Plus price: $1,029\niPhone X (2017)\niPhone X original starting MSRP: $999\nInflation-adjusted iPhone X Plus price: $1,287\niPhone XR (2018)\niPhone XR original starting MSRP: $749\nInflation-adjusted iPhone XR Plus price: $942\niPhone XS/S Max (2018) Table of contents\niPhone price history iPhone XS original starting MSRP: $999\niPhone XS Max original starting MSRP: $1,099\nInflation-adjusted iPhone XS price: $1,254\nInflation-adjusted iPhone XS Plus price: $1,380\niPhone 11/Pro/Pro Max (2019)\niPhone 11 original starting MSRP: $699\niPhone 11 Pro original starting MSRP: $999\niPhone 11 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 11 price: $863\nInflation-adjusted iPhone 11 Pro price: $1,232\nInflation-adjusted iPhone 11 Pro Max price: $1,355\niPhone 12/Mini/Pro/Pro Max (2020)\niPhone 12 original starting MSRP: $799 Table of contents\niPhone price history Login iPhone 12 Mini original starting MSRP: $699\niPhone 12 Pro original starting MSRP: $999\niPhone 12 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 12 price: $976\nInflation-adjusted iPhone 12 Mini price: $853\nInflation-adjusted iPhone 12 Pro price: $1,218\nInflation-adjusted iPhone 12 Pro Max price: $1,340 iPhone 13/Mini/Pro/Pro Max (2021)\niPhone 13 original starting MSRP: $799\niPhone 13 Mini original starting MSRP: $699\niPhone 13 Pro original starting MSRP: $999\niPhone 13 Pro Max original starting MSRP: $1099\nInflation-adjusted iPhone 13 price: $931\nInflation-adjusted iPhone 13 Mini price: $814\nInflation-adjusted iPhone 13 Pro price: $1,163\nInflation-adjusted iPhone 13 Pro Max price: $1,279\niPhone 14/Plus/Pro/Pro Max (2022) Table of contents\niPhone price history Robert Triggs / Android Authority"}

第 3 步:创建 OpenAPI 工具

按照 OpenAPI 和 Integration Connectors 工具中的步骤创建 OpenAPI 工具。

以下示例说明了 OpenAPI 工具如何与 Cloud Run 函数提供的新 API 进行交互。

openapi: 3.0.0
info:
  title: iphone_price_tool
  description: An API to search document about iPhone prices.
  version: 1.0.0
servers:
  - url: https://${CLOUD_FUNCTION_ENDPOINT}
paths:
  /:
    get:
      summary: Search information about iphone prices
      operationId: search
      parameters:
        - in: query
          name: query
          schema:
            type: string
          required: true
          description: The user's question about iphone price
      responses:
        '200':
          description: Retrieved information about iphone price
          content:
            application/json:
              schema:
                type: object
                properties:
                  content:
                    type: string
                    description: Information about iphone price
        '400':
          description: Bad request, query parameter is missing.
          content:
            text/plain:
              schema:
                type: string
                example: "Please provide a 'query' as a URL parameter for POST requests (e.g., ?query=your_question)."
        '500':
          description: Internal server error.
          content:
            text/plain:
              schema:
                type: string
                example: "Error querying: An unexpected error occurred."

第 4 步:创建生成器

按照 OpenAPI 工具中的步骤创建 AI 教练生成器。使用 AI 教练生成器内容来构建 LLM 提示。