追蹤物件

物件追蹤功能可追蹤在輸入影片中偵測到的物件。如要提出物件追蹤要求,請呼叫 annotate 方法,並在 features 欄位中指定 OBJECT_TRACKING

對於在影片或影片片段中偵測到的實體和空間位置,物件追蹤要求會為影片加上這些實體和空間位置的適當標籤。舉例來說,如果影片中的車輛通過交通號誌,系統可能會產生「汽車」、「卡車」、「單車」、「輪胎」、「車燈」、「車窗」等標籤。每個標籤可以包含一系列定界框,每個定界框的相關聯時間片段均含有時間偏移量,指示從影片起始的持續性偏移。註解還包含了其他實體資訊,包括您可以在 Google Knowledge Graph Search API 中用來尋找實體更多資訊的實體 ID。

物件追蹤與標籤偵測

物件追蹤與標籤偵測不同。標籤偵測提供的標籤不含定界框,而物件追蹤會提供指定影片中個別物件的標籤,以及每個物件執行個體在每個時間步的定界框。

相同物件類型的多個執行個體會指派給 ObjectTrackingAnnotation 訊息的不同執行個體,而特定物件軌跡的所有出現次數都會保留在 ObjectTrackingAnnotation 的專屬執行個體中。舉例來說,如果影片中出現紅色和藍色車輛,且持續 5 秒,追蹤要求應會傳回兩個 ObjectTrackingAnnotation 執行個體。第一個執行個體會包含其中一輛車的位置資訊 (例如紅車),第二個執行個體則會包含另一輛車的位置資訊。

要求對 Cloud Storage 中的影片進行物件追蹤

下列範例示範如何對位於 Cloud Storage 中的檔案執行物件追蹤。

REST

傳送處理要求

以下說明如何將 POST 要求傳送至 annotate 方法。範例中使用的存取憑證,屬於使用 Google Cloud CLI 建立的專案服務帳戶。如需安裝 Google Cloud CLI、使用服務帳戶建立專案,以及取得存取權杖的操作說明,請參閱「Video Intelligence 快速入門導覽課程」。

使用任何要求資料之前,請先替換以下項目:

  • INPUT_URISTORAGE_URI
    例如:
    "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",
  • PROJECT_NUMBER: Google Cloud 專案的數字 ID

HTTP 方法和網址:

POST https://videointelligence.googleapis.com/v1/videos:annotate

JSON 要求主體:

{
  "inputUri": "STORAGE_URI",
  "features": ["OBJECT_TRACKING"]
}

請展開以下其中一個選項,以傳送要求:

您應該會收到如下的 JSON 回覆:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

如果要求成功,Video Intelligence API 會傳回作業的 name。上例顯示這類回應的範例,其中 PROJECT_NUMBER 是專案編號,OPERATION_ID 則是為要求建立的長時間執行作業 ID。

取得結果

如要取得要求結果,請使用從 videos:annotate 呼叫傳回的作業名稱,傳送 GET,如下列範例所示。

使用任何要求資料之前,請先替換以下項目:

  • OPERATION_NAME:Video Intelligence API 傳回的作業名稱。作業名稱的格式為 projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: Google Cloud 專案的數字 ID

HTTP 方法和網址:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

請展開以下其中一個選項,以傳送要求:

您應該會收到如下的 JSON 回覆:

下載註解結果

將註解從來源複製到目標值區:(請參閱「複製檔案和物件」)

gcloud storage cp gcs_uri gs://my-bucket

注意:如果輸出 GCS URI 是由使用者提供,註解就會儲存在該 GCS URI 中。

Go


import (
	"context"
	"fmt"
	"io"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// objectTrackingGCS analyzes a video and extracts entities with their bounding boxes.
func objectTrackingGCS(w io.Writer, gcsURI string) error {
	// gcsURI := "gs://cloud-samples-data/video/cat.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: gcsURI,
		Features: []videopb.Feature{
			videopb.Feature_OBJECT_TRACKING,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.ObjectAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		segment := annotation.GetSegment()
		start, _ := ptypes.Duration(segment.GetStartTimeOffset())
		end, _ := ptypes.Duration(segment.GetEndTimeOffset())
		fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)

		fmt.Fprintf(w, "\tConfidence: %f\n", annotation.GetConfidence())

		// Here we print only the bounding box of the first frame in this segment.
		frame := annotation.GetFrames()[0]
		seconds := float32(frame.GetTimeOffset().GetSeconds())
		nanos := float32(frame.GetTimeOffset().GetNanos())
		fmt.Fprintf(w, "\tTime offset of the first frame: %fs\n", seconds+nanos/1e9)

		box := frame.GetNormalizedBoundingBox()
		fmt.Fprintf(w, "\tBounding box position:\n")
		fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
		fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
		fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
		fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())
	}

	return nil
}

Java

/**
 * Track objects in a video.
 *
 * @param gcsUri the path to the video file to analyze.
 */
public static VideoAnnotationResults trackObjectsGcs(String gcsUri) throws Exception {
  try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
    // Create the request
    AnnotateVideoRequest request =
        AnnotateVideoRequest.newBuilder()
            .setInputUri(gcsUri)
            .addFeatures(Feature.OBJECT_TRACKING)
            .setLocationId("us-east1")
            .build();

    // asynchronously perform object tracking on videos
    OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
        client.annotateVideoAsync(request);

    System.out.println("Waiting for operation to complete...");
    // The first result is retrieved because a single video was processed.
    AnnotateVideoResponse response = future.get(450, TimeUnit.SECONDS);
    VideoAnnotationResults results = response.getAnnotationResults(0);

    // Get only the first annotation for demo purposes.
    ObjectTrackingAnnotation annotation = results.getObjectAnnotations(0);
    System.out.println("Confidence: " + annotation.getConfidence());

    if (annotation.hasEntity()) {
      Entity entity = annotation.getEntity();
      System.out.println("Entity description: " + entity.getDescription());
      System.out.println("Entity id:: " + entity.getEntityId());
    }

    if (annotation.hasSegment()) {
      VideoSegment videoSegment = annotation.getSegment();
      Duration startTimeOffset = videoSegment.getStartTimeOffset();
      Duration endTimeOffset = videoSegment.getEndTimeOffset();
      // Display the segment time in seconds, 1e9 converts nanos to seconds
      System.out.println(
          String.format(
              "Segment: %.2fs to %.2fs",
              startTimeOffset.getSeconds() + startTimeOffset.getNanos() / 1e9,
              endTimeOffset.getSeconds() + endTimeOffset.getNanos() / 1e9));
    }

    // Here we print only the bounding box of the first frame in this segment.
    ObjectTrackingFrame frame = annotation.getFrames(0);
    // Display the offset time in seconds, 1e9 converts nanos to seconds
    Duration timeOffset = frame.getTimeOffset();
    System.out.println(
        String.format(
            "Time offset of the first frame: %.2fs",
            timeOffset.getSeconds() + timeOffset.getNanos() / 1e9));

    // Display the bounding box of the detected object
    NormalizedBoundingBox normalizedBoundingBox = frame.getNormalizedBoundingBox();
    System.out.println("Bounding box position:");
    System.out.println("\tleft: " + normalizedBoundingBox.getLeft());
    System.out.println("\ttop: " + normalizedBoundingBox.getTop());
    System.out.println("\tright: " + normalizedBoundingBox.getRight());
    System.out.println("\tbottom: " + normalizedBoundingBox.getBottom());
    return results;
  }
}

Node.js

如要向 Video Intelligence 進行驗證,請設定應用程式預設憑證。詳情請參閱「為本機開發環境設定驗證機制」。

// Imports the Google Cloud Video Intelligence library
const Video = require('@google-cloud/video-intelligence');

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
  inputUri: gcsUri,
  features: ['OBJECT_TRACKING'],
  //recommended to use us-east1 for the best latency due to different types of processors used in this region and others
  locationId: 'us-east1',
};
// Detects objects in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');
//Gets annotations for video
const annotations = results[0].annotationResults[0];
const objects = annotations.objectAnnotations;
objects.forEach(object => {
  console.log(`Entity description:  ${object.entity.description}`);
  console.log(`Entity id: ${object.entity.entityId}`);
  const time = object.segment;
  console.log(
    `Segment: ${time.startTimeOffset.seconds || 0}` +
      `.${(time.startTimeOffset.nanos / 1e6).toFixed(0)}s to ${
        time.endTimeOffset.seconds || 0
      }.` +
      `${(time.endTimeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log(`Confidence: ${object.confidence}`);
  const frame = object.frames[0];
  const box = frame.normalizedBoundingBox;
  const timeOffset = frame.timeOffset;
  console.log(
    `Time offset for the first frame: ${timeOffset.seconds || 0}` +
      `.${(timeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log('Bounding box position:');
  console.log(` left   :${box.left}`);
  console.log(` top    :${box.top}`);
  console.log(` right  :${box.right}`);
  console.log(` bottom :${box.bottom}`);
});

Python

"""Object tracking in a video stored on GCS."""
from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.OBJECT_TRACKING]
operation = video_client.annotate_video(
    request={"features": features, "input_uri": gcs_uri}
)
print("\nProcessing video for object annotations.")

result = operation.result(timeout=500)
print("\nFinished processing.\n")

# The first result is retrieved because a single video was processed.
object_annotations = result.annotation_results[0].object_annotations

for object_annotation in object_annotations:
    print("Entity description: {}".format(object_annotation.entity.description))
    if object_annotation.entity.entity_id:
        print("Entity id: {}".format(object_annotation.entity.entity_id))

    print(
        "Segment: {}s to {}s".format(
            object_annotation.segment.start_time_offset.seconds
            + object_annotation.segment.start_time_offset.microseconds / 1e6,
            object_annotation.segment.end_time_offset.seconds
            + object_annotation.segment.end_time_offset.microseconds / 1e6,
        )
    )

    print("Confidence: {}".format(object_annotation.confidence))

    # Here we print only the bounding box of the first frame in the segment
    frame = object_annotation.frames[0]
    box = frame.normalized_bounding_box
    print(
        "Time offset of the first frame: {}s".format(
            frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
        )
    )
    print("Bounding box position:")
    print("\tleft  : {}".format(box.left))
    print("\ttop   : {}".format(box.top))
    print("\tright : {}".format(box.right))
    print("\tbottom: {}".format(box.bottom))
    print("\n")

其他語言

C#:請按照用戶端程式庫頁面上的 C# 設定操作說明完成相關步驟,然後參閱「.NET 適用的 Video Intelligence 參考文件」。

PHP:請按照用戶端程式庫頁面上的 PHP 設定操作說明完成相關步驟,然後參閱「PHP 適用的 Video Intelligence 參考文件」。

Ruby:請按照用戶端程式庫頁面上的 Ruby 設定操作說明完成相關步驟,然後參閱「Ruby 適用的 Video Intelligence 參考文件」。

要求對本機檔案中的影片進行物件追蹤

下列範例示範如何對本機儲存的檔案進行物件追蹤。

REST

傳送處理要求

如要對本機影片檔案執行註解,請對影片檔案的內容執行 base64 編碼。 在要求的 inputContent 欄位中加入 Base64 編碼的內容。 如要瞭解如何對影片檔案內容進行 base64 編碼,請參閱「Base64 編碼」。

以下說明如何將 POST 要求傳送至 videos:annotate 方法。其中使用的存取憑證,屬於透過 Google Cloud CLI 建立的專案服務帳戶。如需安裝 Google Cloud CLI、使用服務帳戶建立專案,以及取得存取權杖的操作說明,請參閱 Video Intelligence 快速入門導覽課程

使用任何要求資料之前,請先替換以下項目:

  • inputContentBASE64_ENCODED_CONTENT
    例如: "UklGRg41AwBBVkkgTElTVAwBAABoZHJsYXZpaDgAAAA1ggAAxPMBAAAAAAAQCAA..."
  • PROJECT_NUMBER: Google Cloud 專案的數字 ID

HTTP 方法和網址:

POST https://videointelligence.googleapis.com/v1/videos:annotate

JSON 要求主體:

{
  "inputContent": "BASE64_ENCODED_CONTENT",
  "features": ["OBJECT_TRACKING"]
}

請展開以下其中一個選項,以傳送要求:

您應該會收到如下的 JSON 回覆:

如果要求成功,Video Intelligence API 會傳回作業的 name。以下是這類回應的範例,其中 PROJECT_NUMBER 是專案編號,OPERATION_ID 則是為要求建立的長時間執行作業 ID。

取得結果

如要取得要求結果,您必須使用從 videos:annotate 呼叫傳回的作業名稱,傳送 GET,如下列範例所示。

使用任何要求資料之前,請先替換以下項目:

  • OPERATION_NAME:Video Intelligence API 傳回的作業名稱。作業名稱的格式為 projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: Google Cloud 專案的數字 ID

HTTP 方法和網址:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

請展開以下其中一個選項,以傳送要求:

您應該會收到如下的 JSON 回覆:

Go


import (
	"context"
	"fmt"
	"io"
	"os"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// objectTracking analyzes a video and extracts entities with their bounding boxes.
func objectTracking(w io.Writer, filename string) error {
	// filename := "../testdata/cat.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	fileBytes, err := os.ReadFile(filename)
	if err != nil {
		return err
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputContent: fileBytes,
		Features: []videopb.Feature{
			videopb.Feature_OBJECT_TRACKING,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.ObjectAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		segment := annotation.GetSegment()
		start, _ := ptypes.Duration(segment.GetStartTimeOffset())
		end, _ := ptypes.Duration(segment.GetEndTimeOffset())
		fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)

		fmt.Fprintf(w, "\tConfidence: %f\n", annotation.GetConfidence())

		// Here we print only the bounding box of the first frame in this segment.
		frame := annotation.GetFrames()[0]
		seconds := float32(frame.GetTimeOffset().GetSeconds())
		nanos := float32(frame.GetTimeOffset().GetNanos())
		fmt.Fprintf(w, "\tTime offset of the first frame: %fs\n", seconds+nanos/1e9)

		box := frame.GetNormalizedBoundingBox()
		fmt.Fprintf(w, "\tBounding box position:\n")
		fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
		fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
		fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
		fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())
	}

	return nil
}

Java

/**
 * Track objects in a video.
 *
 * @param filePath the path to the video file to analyze.
 */
public static VideoAnnotationResults trackObjects(String filePath) throws Exception {
  try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
    // Read file
    Path path = Paths.get(filePath);
    byte[] data = Files.readAllBytes(path);

    // Create the request
    AnnotateVideoRequest request =
        AnnotateVideoRequest.newBuilder()
            .setInputContent(ByteString.copyFrom(data))
            .addFeatures(Feature.OBJECT_TRACKING)
            .setLocationId("us-east1")
            .build();

    // asynchronously perform object tracking on videos
    OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
        client.annotateVideoAsync(request);

    System.out.println("Waiting for operation to complete...");
    // The first result is retrieved because a single video was processed.
    AnnotateVideoResponse response = future.get(450, TimeUnit.SECONDS);
    VideoAnnotationResults results = response.getAnnotationResults(0);

    // Get only the first annotation for demo purposes.
    ObjectTrackingAnnotation annotation = results.getObjectAnnotations(0);
    System.out.println("Confidence: " + annotation.getConfidence());

    if (annotation.hasEntity()) {
      Entity entity = annotation.getEntity();
      System.out.println("Entity description: " + entity.getDescription());
      System.out.println("Entity id:: " + entity.getEntityId());
    }

    if (annotation.hasSegment()) {
      VideoSegment videoSegment = annotation.getSegment();
      Duration startTimeOffset = videoSegment.getStartTimeOffset();
      Duration endTimeOffset = videoSegment.getEndTimeOffset();
      // Display the segment time in seconds, 1e9 converts nanos to seconds
      System.out.println(
          String.format(
              "Segment: %.2fs to %.2fs",
              startTimeOffset.getSeconds() + startTimeOffset.getNanos() / 1e9,
              endTimeOffset.getSeconds() + endTimeOffset.getNanos() / 1e9));
    }

    // Here we print only the bounding box of the first frame in this segment.
    ObjectTrackingFrame frame = annotation.getFrames(0);
    // Display the offset time in seconds, 1e9 converts nanos to seconds
    Duration timeOffset = frame.getTimeOffset();
    System.out.println(
        String.format(
            "Time offset of the first frame: %.2fs",
            timeOffset.getSeconds() + timeOffset.getNanos() / 1e9));

    // Display the bounding box of the detected object
    NormalizedBoundingBox normalizedBoundingBox = frame.getNormalizedBoundingBox();
    System.out.println("Bounding box position:");
    System.out.println("\tleft: " + normalizedBoundingBox.getLeft());
    System.out.println("\ttop: " + normalizedBoundingBox.getTop());
    System.out.println("\tright: " + normalizedBoundingBox.getRight());
    System.out.println("\tbottom: " + normalizedBoundingBox.getBottom());
    return results;
  }
}

Node.js

如要向 Video Intelligence 進行驗證,請設定應用程式預設憑證。詳情請參閱「為本機開發環境設定驗證機制」。

// Imports the Google Cloud Video Intelligence library
const Video = require('@google-cloud/video-intelligence');
const fs = require('fs');
const util = require('util');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();
/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = await util.promisify(fs.readFile)(path);
const inputContent = file.toString('base64');

const request = {
  inputContent: inputContent,
  features: ['OBJECT_TRACKING'],
  //recommended to use us-east1 for the best latency due to different types of processors used in this region and others
  locationId: 'us-east1',
};
// Detects objects in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');
//Gets annotations for video
const annotations = results[0].annotationResults[0];
const objects = annotations.objectAnnotations;
objects.forEach(object => {
  console.log(`Entity description:  ${object.entity.description}`);
  console.log(`Entity id: ${object.entity.entityId}`);
  const time = object.segment;
  console.log(
    `Segment: ${time.startTimeOffset.seconds || 0}` +
      `.${(time.startTimeOffset.nanos / 1e6).toFixed(0)}s to ${
        time.endTimeOffset.seconds || 0
      }.` +
      `${(time.endTimeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log(`Confidence: ${object.confidence}`);
  const frame = object.frames[0];
  const box = frame.normalizedBoundingBox;
  const timeOffset = frame.timeOffset;
  console.log(
    `Time offset for the first frame: ${timeOffset.seconds || 0}` +
      `.${(timeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log('Bounding box position:');
  console.log(` left   :${box.left}`);
  console.log(` top    :${box.top}`);
  console.log(` right  :${box.right}`);
  console.log(` bottom :${box.bottom}`);
});

Python

"""Object tracking in a local video."""
from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.OBJECT_TRACKING]

with io.open(path, "rb") as file:
    input_content = file.read()

operation = video_client.annotate_video(
    request={"features": features, "input_content": input_content}
)
print("\nProcessing video for object annotations.")

result = operation.result(timeout=500)
print("\nFinished processing.\n")

# The first result is retrieved because a single video was processed.
object_annotations = result.annotation_results[0].object_annotations

# Get only the first annotation for demo purposes.
object_annotation = object_annotations[0]
print("Entity description: {}".format(object_annotation.entity.description))
if object_annotation.entity.entity_id:
    print("Entity id: {}".format(object_annotation.entity.entity_id))

print(
    "Segment: {}s to {}s".format(
        object_annotation.segment.start_time_offset.seconds
        + object_annotation.segment.start_time_offset.microseconds / 1e6,
        object_annotation.segment.end_time_offset.seconds
        + object_annotation.segment.end_time_offset.microseconds / 1e6,
    )
)

print("Confidence: {}".format(object_annotation.confidence))

# Here we print only the bounding box of the first frame in this segment
frame = object_annotation.frames[0]
box = frame.normalized_bounding_box
print(
    "Time offset of the first frame: {}s".format(
        frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
    )
)
print("Bounding box position:")
print("\tleft  : {}".format(box.left))
print("\ttop   : {}".format(box.top))
print("\tright : {}".format(box.right))
print("\tbottom: {}".format(box.bottom))
print("\n")

其他語言

C#:請按照用戶端程式庫頁面上的 C# 設定操作說明完成相關步驟,然後參閱「.NET 適用的 Video Intelligence 參考文件」。

PHP:請按照用戶端程式庫頁面上的 PHP 設定操作說明完成相關步驟,然後參閱「PHP 適用的 Video Intelligence 參考文件」。

Ruby:請按照用戶端程式庫頁面上的 Ruby 設定操作說明完成相關步驟,然後參閱「Ruby 適用的 Video Intelligence 參考文件」。