Avant de commencer
Ce tutoriel suppose que vous avez lu et suivi les instructions de :
- Développer un agent LangGraph : pour développer
agent
en tant qu'instance deLanggraphAgent
. - Authentification de l'utilisateur pour s'authentifier en tant qu'utilisateur afin d'interroger l'agent.
- Importez et initialisez le SDK pour initialiser le client afin d'obtenir une instance déployée (si nécessaire).
Obtenir une instance d'un agent
Pour interroger un LanggraphAgent
, vous devez d'abord créer une instance ou obtenir une instance existante.
Pour obtenir le LanggraphAgent
correspondant à un ID de ressource spécifique :
SDK Vertex AI pour Python
Exécutez le code suivant :
import vertexai
client = vertexai.Client( # For service interactions via client.agent_engines
project="PROJECT_ID",
location="LOCATION",
)
agent = client.agent_engines.get(name="projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID")
print(agent)
Où :
PROJECT_ID
correspond à l'ID de projet Google Cloud sous lequel vous développerez et déploierez des agents.LOCATION
désigne l'une des régions compatibles.RESOURCE_ID
est l'ID de l'agent déployé en tant que ressourcereasoningEngine
.
Bibliothèque de requêtes Python
Exécutez le code suivant :
from google import auth as google_auth
from google.auth.transport import requests as google_requests
import requests
def get_identity_token():
credentials, _ = google_auth.default()
auth_request = google_requests.Request()
credentials.refresh(auth_request)
return credentials.token
response = requests.get(
f"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID",
headers={
"Content-Type": "application/json; charset=utf-8",
"Authorization": f"Bearer {get_identity_token()}",
},
)
API REST
curl \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID
Lorsque vous utilisez le SDK Vertex AI pour Python, l'objet agent
correspond à une classe AgentEngine
qui contient les éléments suivants :
- un
agent.api_resource
contenant des informations sur l'agent déployé. Vous pouvez également appeleragent.operation_schemas()
pour renvoyer la liste des opérations compatibles avec l'agent. Pour en savoir plus, consultez Opérations compatibles. - un
agent.api_client
qui permet des interactions de service synchrones. - un
agent.async_api_client
qui permet des interactions de service asynchrones.
Le reste de cette section suppose que vous disposez d'une instance AgentEngine
nommée agent
.
Opérations compatibles
Les opérations suivantes sont acceptées pour LanggraphAgent
:
query
: pour obtenir une réponse à une requête de manière synchrone.stream_query
: pour diffuser une réponse à une requête.get_state
: pour obtenir un point de contrôle spécifique.get_state_history
: pour lister les points de contrôle d'un thread.update_state
: pour créer des branches correspondant à différents scénarios.
Diffuser une réponse à une requête
LangGraph est compatible avec plusieurs modes de streaming. Voici les principaux :
values
: ce mode diffuse l'état complet du graphique après chaque appel de nœud.updates
: ce mode diffuse les mises à jour de l'état du graphique après l'appel de chaque nœud.
Pour diffuser values
(qui correspond à l'état complet du graphique) :
for state_values in agent.stream_query(
input=inputs,
stream_mode="values",
config={"configurable": {"thread_id": "streaming-thread-values"}},
):
print(state_values)
Pour diffuser updates
(correspondant aux mises à jour de l'état du graphique) :
for state_updates in agent.stream_query(
input=inputs,
stream_mode="updates",
config={"configurable": {"thread_id": "streaming-thread-updates"}},
):
print(state_updates)
Human-in-the-loop (avec intervention humaine)
Dans LangGraph, un aspect courant de l'approche "humain dans la boucle" consiste à ajouter des points d'arrêt pour interrompre la séquence d'actions de l'agent et permettre à un humain de reprendre le flux ultérieurement.
Récapitulatif
Vous pouvez définir des points d'arrêt à l'aide des arguments interrupt_before=
ou interrupt_after=
lorsque vous appelez .query
ou .stream_query
:
from langchain.load import load as langchain_load
response = agent.query(
input=inputs,
interrupt_before=["tools"], # after generating the function call, before invoking the function
interrupt_after=["tools"], # after getting a function response, before moving on
config={"configurable": {"thread_id": "human-in-the-loop-deepdive"}},
)
langchain_load(response['messages'][-1]).pretty_print()
Le résultat ressemblera à ce qui suit :
================================== Ai Message ==================================
Tool Calls:
get_exchange_rate (12610c50-4465-4296-b1f3-d751ec959fd5)
Call ID: 12610c50-4465-4296-b1f3-d751ec959fd5
Args:
currency_from: USD
currency_to: SEK
Approbation
Pour approuver l'appel d'outil généré et reprendre l'exécution, transmettez None
à l'entrée et spécifiez le thread ou le point de contrôle dans config
:
from langchain.load import load as langchain_load
response = agent.query(
input=None, # Continue with the function call
interrupt_before=["tools"], # after generating the function call, before invoking the function
interrupt_after=["tools"], # after getting a function response, before moving on
config={"configurable": {"thread_id": "human-in-the-loop-deepdive"}},
)
langchain_load(response['messages'][-1]).pretty_print()
Le résultat ressemblera à ce qui suit :
================================= Tool Message =================================
Name: get_exchange_rate
{"amount": 1.0, "base": "USD", "date": "2024-11-14", "rates": {"SEK": 11.0159}}
Historique
Pour lister tous les points de contrôle d'un thread donné, utilisez la méthode .get_state_history
:
for state_snapshot in agent.get_state_history(
config={"configurable": {"thread_id": "human-in-the-loop-deepdive"}},
):
if state_snapshot["metadata"]["step"] >= 0:
print(f'step {state_snapshot["metadata"]["step"]}: {state_snapshot["config"]}')
state_snapshot["values"]["messages"][-1].pretty_print()
print("\n")
La réponse sera semblable à la séquence de résultats suivante :
step 3: {'configurable': {'thread_id': 'human-in-the-loop-deepdive', 'checkpoint_ns': '', 'checkpoint_id': '1efa2e95-ded5-67e0-8003-2d34e04507f5'}}
================================== Ai Message ==================================
The exchange rate from US dollars to Swedish krona is 1 USD to 11.0159 SEK.
step 2: {'configurable': {'thread_id': 'human-in-the-loop-deepdive', 'checkpoint_ns': '', 'checkpoint_id': '1efa2e95-d189-6a77-8002-5dbe79e2ce58'}}
================================= Tool Message =================================
Name: get_exchange_rate
{"amount": 1.0, "base": "USD", "date": "2024-11-14", "rates": {"SEK": 11.0159}}
step 1: {'configurable': {'thread_id': 'human-in-the-loop-deepdive', 'checkpoint_ns': '', 'checkpoint_id': '1efa2e95-cc7f-6d68-8001-1f6b5e57c456'}}
================================== Ai Message ==================================
Tool Calls:
get_exchange_rate (12610c50-4465-4296-b1f3-d751ec959fd5)
Call ID: 12610c50-4465-4296-b1f3-d751ec959fd5
Args:
currency_from: USD
currency_to: SEK
step 0: {'configurable': {'thread_id': 'human-in-the-loop-deepdive', 'checkpoint_ns': '', 'checkpoint_id': '1efa2e95-c2e4-6f3c-8000-477fd654cb53'}}
================================ Human Message =================================
What is the exchange rate from US dollars to Swedish currency?
Obtenir la configuration d'une étape
Pour obtenir un point de contrôle antérieur, spécifiez checkpoint_id
(et checkpoint_ns
). Tout d'abord, revenez à l'étape 1, lorsque l'appel d'outil a été généré :
snapshot_config = {}
for state_snapshot in agent.get_state_history(
config={"configurable": {"thread_id": "human-in-the-loop-deepdive"}},
):
if state_snapshot["metadata"]["step"] == 1:
snapshot_config = state_snapshot["config"]
break
print(snapshot_config)
Le résultat ressemblera à ce qui suit :
{'configurable': {'thread_id': 'human-in-the-loop-deepdive',
'checkpoint_ns': '',
'checkpoint_id': '1efa2e95-cc7f-6d68-8001-1f6b5e57c456'}}
Fonctionnalité temporelle
Pour obtenir un point de contrôle, vous pouvez utiliser la méthode .get_state
:
# By default, it gets the latest state [unless (checkpoint_ns, checkpoint_id) is specified]
state = agent.get_state(config={"configurable": {
"thread_id": "human-in-the-loop-deepdive",
}})
print(f'step {state["metadata"]["step"]}: {state["config"]}')
state["values"]["messages"][-1].pretty_print()
Par défaut, il obtient le dernier point de contrôle (par code temporel). Le résultat devrait être semblable à ce qui suit :
step 3: {'configurable': {'thread_id': 'human-in-the-loop-deepdive', 'checkpoint_ns': '', 'checkpoint_id': '1efa2e95-ded5-67e0-8003-2d34e04507f5'}}
================================== Ai Message ==================================
The exchange rate from US dollars to Swedish krona is 1 USD to 11.0159 SEK.
Obtenir le point de contrôle d'une configuration
Pour une configuration donnée (par exemple, snapshot_config
à partir de la configuration d'une étape), vous pouvez obtenir le point de contrôle correspondant :
state = agent.get_state(config=snapshot_config)
print(f'step {state["metadata"]["step"]}: {state["config"]}')
state["values"]["messages"][-1].pretty_print()
Le résultat ressemblera à ce qui suit :
step 1: {'configurable': {'thread_id': 'human-in-the-loop-deepdive', 'checkpoint_ns': '', 'checkpoint_id': '1efa2e95-cc7f-6d68-8001-1f6b5e57c456'}}
================================== Ai Message ==================================
Tool Calls:
get_exchange_rate (12610c50-4465-4296-b1f3-d751ec959fd5)
Call ID: 12610c50-4465-4296-b1f3-d751ec959fd5
Args:
currency_from: USD
currency_to: SEK
Revoir
Pour rejouer à partir d'un état donné, transmettez la configuration de l'état (c'est-à-dire state["config"]
) à l'agent. La configuration de l'état est un dictionnaire qui se présente comme suit :
{'configurable': {'thread_id': 'human-in-the-loop-deepdive',
'checkpoint_ns': '',
'checkpoint_id': '1efa2e95-cc7f-6d68-8001-1f6b5e57c456'}}
Pour relire à partir de state["config"]
(où un appel d'outil a été généré), spécifiez None
dans l'entrée :
from langchain.load import load as langchain_load
for state_values in agent.stream_query(
input=None, # resume
stream_mode="values",
config=state["config"],
):
langchain_load(state_values["messages"][-1]).pretty_print()
Vous obtiendrez un résultat semblable à la séquence de sorties suivante :
================================== Ai Message ==================================
Tool Calls:
get_exchange_rate (12610c50-4465-4296-b1f3-d751ec959fd5)
Call ID: 12610c50-4465-4296-b1f3-d751ec959fd5
Args:
currency_from: USD
currency_to: SEK
================================= Tool Message =================================
Name: get_exchange_rate
{"amount": 1.0, "base": "USD", "date": "2024-11-14", "rates": {"SEK": 11.0159}}
================================== Ai Message ==================================
The exchange rate from US dollars to Swedish krona is 1 USD to 11.0159 SEK.
Branchement
Vous pouvez créer des branches à partir de points de contrôle précédents pour essayer d'autres scénarios à l'aide de la méthode .update_state
:
branch_config = agent.update_state(
config=state["config"],
values={"messages": [last_message]}, # the update we want to make
)
print(branch_config)
Le résultat ressemblera à ce qui suit :
{'configurable': {'thread_id': 'human-in-the-loop-deepdive',
'checkpoint_ns': '',
'checkpoint_id': '1efa2e96-0560-62ce-8002-d1bb48a337bc'}}
Nous pouvons interroger l'agent avec branch_config
pour reprendre à partir du point de contrôle avec l'état mis à jour :
from langchain.load import load as langchain_load
for state_values in agent.stream_query(
input=None, # resume
stream_mode="values",
config=branch_config,
):
langchain_load(state_values["messages"][-1]).pretty_print()
Vous obtiendrez un résultat semblable à la séquence de sorties suivante :
================================== Ai Message ==================================
Tool Calls:
get_exchange_rate (12610c50-4465-4296-b1f3-d751ec959fd5)
Call ID: 12610c50-4465-4296-b1f3-d751ec959fd5
Args:
currency_date: 2024-09-01
currency_from: USD
currency_to: SEK
================================= Tool Message =================================
Name: get_exchange_rate
{"amount": 1.0, "base": "USD", "date": "2024-08-30", "rates": {"SEK": 10.2241}}
================================== Ai Message ==================================
The exchange rate from US dollars to Swedish krona on 2024-08-30 was 1 USD to 10.2241 SEK.