Vector assist reference

This page provides detailed information about all available vector assist functions, and their required and optional parameters.

vector_assist.define_spec

Defines a new vector specification, or vector spec, and returns recommendations necessary to step up the vector workload. This function applies user-provided specifications to generate the recommendations.

Function

CREATE OR REPLACE FUNCTION vector_assist.define_spec(
    spec_id TEXT DEFAULT NULL,
    table_name TEXT,
    schema_name TEXT DEFAULT NULL,
    vector_column_name TEXT DEFAULT NULL,
    text_column_name TEXT DEFAULT NULL,
    vector_index_type TEXT DEFAULT NULL, -- Allowed: 'hnsw', 'ivfflat'
    embeddings_available BOOL DEFAULT NULL,
    embedding_model TEXT DEFAULT NULL,
    num_vectors INT DEFAULT NULL,
    dimensionality INT DEFAULT NULL,
    distance_func TEXT DEFAULT NULL, -- Allowed: 'cosine', 'ip', 'l2', 'l1'
    quantization TEXT DEFAULT NULL, -- Allowed: 'none', 'halfvec', 'bit'
    prefilter_column_names TEXT[] DEFAULT NULL,
    memory_budget_kb INT DEFAULT NULL, -- In KB
    target_recall FLOAT DEFAULT NULL,
    target_top_k INT DEFAULT NULL,
    tune_vector_index BOOL DEFAULT FALSE, -- Set to true if target_recall is set
)
RETURNS SETOF vector_assist.RECOMMENDATIONS;

Parameters

Parameter Required? Description
spec_id Required (Auto-generated) A unique ID for the vector spec that you define.
table_name Required? The table name to be used in the vector workload setup.
schema_name Optional The schema containing the table to be used in the vector workload. The schema is automatically inferred based on the schema search path.
vector_column_name Optional or required The column name for the column containing the vector embeddings.

This column is required if you're using more than one vector column and the text_column_name is not declared. If you're only using one vector column, then this parameter is optional.
text_column_name Optional or required The column name for the text column. If your vector workload requires embeddings generation from a text column, then this parameter is required.

This column is required if the vector_column_name parameter is NULL and there are no other vector columns.

This parameter uses the google_ml_integration extension to generate embeddings from the given text column.
vector_index_type Optional The type of the vector index. Acceptable values include:
  • HNSW
  • IVFFlat
  • SCANN
embeddings_available Optional A boolean that checks if vector embeddings exist in the selected table. This field is set to FALSE if no vector columns are detected and the text_column_name parameter is set.
embedding_model Optional or required The model ID from google_ml.models to be used to generate the embeddings. This field is optional, unless the embeddings_available parameter is FALSE or NULL.
num_vectors Optional The number of vectors in the table.
dismensionality Optional The dimension of the given vectors.
distance_func Optional The distance function to be used to compare vector. Acceptable values include cosine, ip, l2, or l1.
quantization Optional The quantization for the vector indexes. Acceptable values include none, halfvec, or bit.
prefilter_column_names Optional Creates an index for specified column for prefiltering. This might help improve performance for queries with a high selectivity filter on the column.
memory_budget_kb Optional The maximum memory (in KB) for index building.
target_recall Optional The target recall for standard vector queries.
target_top_k Optional The top-K matching values to retrieve for recall calculation. This value is used if the target_recall parameter is specified.
tune_vector_index Optional Tunes the vector indexes in your workload. If enabled, vector assist auto-tunes the vector index or search query using the vector spec, and computes the optimal database and index parameters Acceptable values include TRUE or FALSE.

Return value

Returns a table of recommendations that must be applied to set up the requested vector workload. Each row is a single recommendation that contains an executable SQL query and a detailed explanation of why to apply the recommendation. The recommendation can be applied using the apply_recommendation() function.

The recommendations table contains the following columns:

Column name Type Description
recommendation_id Text The ID of the recommendation. The recommendation is applied using this ID.
vector_spec_id Text The ID of the vector spec that is associated with the recommendation.
table_name Text The table name associated with the recommendation.
schema_name Text The schema name containing the given table.
query Text The executable SQL query to be run to achieve the outcome of the recommendation.
recommendation Text The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations.
applied Boolean Shows whether the recommendation has been applied.
modified Boolean Shows whether the recommendation has been modified by the user.
created_at Timestamp with time zone The time when the recommendation was generated in the timestamp with time zone format. For example, 2024-07-18 09:00:00-08.

vector_assist.list_specs

Returns the current vector spec for a given table and column.

Function

CREATE OR REPLACE FUNCTION vector_assist.list_specs(
  table_name      TEXT,
  column_name     TEXT DEFAULT NULL
)
RETURNS SETOF vector_assist.VECTOR_SPECS

Parameters

Parameter Required? Description
table_name Required? The name of the table that the vector spec is retrieved for.
column_name Optional The column name to filter the table on before returning the spec. If the column name is specified, then specifications that contain text or vector column names that match this column name are returned.

Return value

Returns a table of specifications for the given table and optionally, column name.

vector_assist.modify_spec

Modifies an existing vector spec. When the vector spec is modified, the associated recommendations are regenerated based on the new specs.

Function

CREATE OR REPLACE FUNCTION vector_assist.modify_spec(
  spec_id                TEXT,
  table_name             TEXT DEFAULT NULL,
  schema_name            TEXT DEFAULT NULL,
  vector_column_name     TEXT DEFAULT NULL,
  text_column_name       TEXT DEFAULT NULL,
  vector_index_type      TEXT DEFAULT NULL,
  embeddings_available   BOOL DEFAULT NULL,
  num_vectors            INT DEFAULT NULL,
  dimensionality         INT DEFAULT NULL,
  embedding_model        TEXT DEFAULT NULL,
  prefilter_column_names TEXT[] DEFAULT NULL,
  distance_func          TEXT DEFAULT NULL,
  quantization           TEXT DEFAULT NULL,
  memory_budget_kb       INT DEFAULT NULL,
  target_recall          FLOAT DEFAULT NULL,
  target_top_k           INT DEFAULT NULL,
  tune_vector_index      BOOL DEFAULT NULL
)
RETURNS SETOF vector_assist.RECOMMENDATIONS

Parameters

Parameter Required? Description
spec_id Required (Auto-generated) A unique ID for the vector spec that you define.
table_name Required? The table name to be used in the vector workload setup.
schema_name Optional The schema containing the table to be used in the vector workload. The schema is automatically inferred based on the schema search path.
vector_column_name Optional or required The column name for the column containing the vector embeddings.

This column is required if you're using more than one vector column and the text_column_name is not declared. If you're only using one vector column, then this parameter is optional.
text_column_name Optional or required The column name for the text column. If your vector workload requires embeddings generation from a text column, then this parameter is required.

This column is required if the vector_column_name parameter is NULL and there are no other vector columns.

This parameter uses the google_ml_integration extension to generate embeddings from the given text column.
vector_index_type Optional The type of the vector index. Acceptable values include:
  • HNSW
  • IVFFlat
  • SCANN
embeddings_available Optional A boolean that checks if vector embeddings exist in the selected table. This field is set to FALSE if no vector columns are detected and the text_column_name parameter is set.
embedding_model Optional or required The model ID from google_ml.models to be used to generate the embeddings. This field is optional, unless the embeddings_available parameter is FALSE or NULL.
num_vectors Optional The number of vectors in the table.
dismensionality Optional The dimension of the given vectors.
distance_func Optional The distance function to be used to compare vector. Acceptable values include cosine, ip, l2, or l1.
quantization Optional The quantization for the vector indexes. Acceptable values include none, halfvec, or bit.
prefilter_column_names Optional Identifies the columns that are made available for prefiltering in vector search queries.
memory_budget_kb Optional The maximum memory (in KB) for index building.
target_recall Optional The target recall for standard vector queries.
target_top_k Optional The top-K matching values to retrieve for recall calculation. This value is used if the target_recall parameter is specified.
tune_vector_index Optional Tunes the vector indexes in your workload. If enabled, vector assist auto-tunes the vector index or search query using the vector spec, and computes the optimal database and index parameters Acceptable values include TRUE or FALSE.

Return value

Returns an updated table of recommendations that must be applied to set up the requested vector workload. Each row is a single recommendation that contains an executable SQL query and a detailed explanation of why to apply the recommendation. The recommendation can be applied using the apply_recommendation() function.

The recommendations table contains the following columns:

Column name Type Description
recommendation_id Text The ID of the recommendation. The recommendation is applied using this ID.
vector_spec_id Text The ID of the vector spec that is associated with the recommendation.
table_name Text The table name associated with the recommendation.
schema_name Text The schema name containing the given table.
query Text The executable SQL query to be run to achieve the outcome of the recommendation.
recommendation Text The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations.
applied Boolean Shows whether the recommendation has been applied.
modified Boolean Shows whether the recommendation has been modified by the user.
created_at Timestamp with timezone The time when the recommendation was generated.

vector_assist.get_recommendations

Returns recommendations associated with a specific vector spec_id.

Function

CREATE OR REPLACE FUNCTION vector_assist.get_recommendations (
    spec_id TEXT
)
RETURNS SETOF vector_assist.RECOMMENDATIONS;

Parameters

Parameter Required? Description
spec_id Required? Gets recommendations for the specified vector spec_id.

Return value

Returns a table of requested recommendations.

The recommendations table contains the following columns:

Column name Type Description
recommendation_id Text The ID of the recommendation. The recommendation is applied using this ID.
vector_spec_id Text The ID of the vector spec that is associated with the recommendation.
table_name Text The table name associated with the recommendation.
schema_name Text The schema name containing the given table.
query Text The executable SQL query to be run to achieve the outcome of the recommendation.
recommendation Text The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations.
applied Boolean Shows whether the recommendation has been applied.
modified Boolean Shows whether the recommendation has been modified by the user.
created_at Timestamp with timezone The time when the recommendation was generated.

vector_assist.apply_recommendation

Applies a single recommendation using the recommendation_id.

Function

CREATE OR REPLACE FUNCTION vector_assist.get_recommendations (
    spec_id TEXT
)
RETURNS SETOF vector_assist.RECOMMENDATIONS;

Parameters

Parameter Required? Description
recommenation_id Required? The ID of the vector recommendation to apply.

Return value

Returns a boolean that confirms if a recommendation was successfully applied and update the vector_assist.RECOMMENDATIONS table column applied to TRUE.

If vector assist is unable to apply the recommendation, then it raises an error message on failure.

vector_assist.apply_spec

Applies all recommendations associated with a specific vector spec_id or table name. This function goes through all recommendations and runs the vector_assist.apply_recommendation function on each recommendation.

Must specify either a spec_id or table_name to run function.

Function

CREATE OR REPLACE FUNCTION vector_assist.apply_spec(
    spec_id TEXT DEFAULT NULL,
    table_name TEXT DEFAULT NULL,
    schema_name TEXT DEFAULT NULL,
    column_name TEXT DEFAULT NULL -- text_column_name or vector_column_name
)
RETURNS BOOLEAN;

Parameters

Parameter Required? Description
spec_id Optional Applies all recommendations for the given vector spec_id.
table_name Optional Applies all recommendations for the given table.
schema_name Optional The schema containing the specified table.
column_name Optional Identifies the text_column_name or vector_column_name to use if the table contains multiple vector specs.

Return value

Returns a boolean that confirms if all recommendations were successfully applied and sets the value in the vector_assist.RECOMMENDATIONS table column applied to TRUE for all recommendations.

If vector assist is unable to apply the recommendation, then it raises an error message on failure.

vector_assist.modify_recommendation

Modifies the query for a specific recommendation and sets the modified field in the vector_assist.RECOMMENDATIONS table for the associated recommendation to TRUE.

Function

CREATE OR REPLACE FUNCTION vector_assist.modify_recommendation(
    recommendation_id TEXT,
    modified_query TEXT
)
RETURNS BOOLEAN;

Parameters

Parameter Required? Description
recommendation_id Required? The ID of the recommendation to modify.
modified_query Required? A user-modified SQL query for the recommendation.

Return value

Returns a boolean that confirms if a recommendation was successfully updated and sets the vector_assist.RECOMMENDATIONS table column modified to TRUE.

If vector assist is unable to update the recommendation, then it raises an error message on failure.

vector_assist.generate_query

Generates an optimized vector search query based on the defined vector spec and search parameters. This function might tune the ef_search value to meet the set target_recall if applicable.

Function

CREATE OR REPLACE FUNCTION vector_assist.generate_query(
    spec_id TEXT DEFAULT NULL,
    table_name TEXT DEFAULT NULL,
    schema_name TEXT DEFAULT NULL,
    column_name TEXT DEFAULT NULL, -- text_column_name or vector_column_name of the spec
    search_text TEXT DEFAULT NULL,
    search_vector VECTOR DEFAULT NULL, -- e.g. '[1.0,2.0,3.0]'::vector
   output_column_names TEXT[] DEFAULT NULL, -- Columns to retrieve, NULL for SELECT *
    top_k INT DEFAULT NULL,
    filter_expressions TEXT[] DEFAULT NULL,
    target_recall FLOAT DEFAULT NULL, -- Inherited from spec, can be overridden
    iterative_index_search BOOL DEFAULT NULL
)
RETURNS TEXT; -- Returns the text representing the search query

Parameters

Parameter Required? Description
spec_id Optional Specifies the spec_id to generate the query for.
table_name Optional Specifies the table name to generate the search query for if the spec_id isn't provided. If a table contains multiple specs, then the parameter returns an error.
column_name Optional Specifics the column name to generate the search query for if the spec_id isn't provided. If the column contains multiple specs, then the parameter returns an error. The column_name might be the text_column_name or the vector_column_name.
output_column_name Optional The column names to retrieve in the output query. To retrieve all columns, set this parameter to NULL.
search_text Optional The search text to generate embeddings for. Requires the embedding_model in the vector spec. The embedding is generated using the model from the spec. You can only set either the search_text or the search_vector parameter.
search_vector Optional The vector for the search query. You can only set either the search_text or the search_vector parameter
top_k Optional The number of nearest neighbors to return.
filter_expressions Optional The filter expressions to apply in the search query. The filters can be applied to fields in the table, such as price < 100.
iterative_index_search Optional Sets whether to perform iterative index search for filtered queries.This parameter overrides the settings in the vector spec.
target_recall Optional The target recall for the search query only. This parameter overrides the settings in the vector spec and tunes ef_search.

Return value

Returns a text containing the vector search query for the given parameters. This query can be executed or saved to run later.

vector_assist.evaluate_query_recall

Evaluates the recall of the vector index for a given query. This function uses the database and index configurations in a JSON string as inputs.

Function

CREATE OR REPLACE FUNCTION vector_assist.evaluate_query_recall(
  IN ann_query text,
  IN vector_search_configurations json DEFAULT NULL,
  OUT recall float,
  OUT ann_execution_time float,
  OUT ground_truth_execution_time float,
  OUT index_type text)
RETURNS RECORD

Parameters

Parameter Required? Description
ann_query Required? The SQL query for which recall needs to be evaluated. This query should be a pgvector ANN query.
vector_search_configurations Optional The configurations that can be set for the ANN query. This parameter must be in JSON format.

Return value

Returns a table that evaluates the recall of the vector index for the given query.

The table contains the following columns:

Column name Type Description
recall Float The percentage of vectors that the index returns, which are true nearest neighbors. This metric is used to quantify search quality. This function lets you tune the parameters to return the expected vector query recall results.
ann_execution_time Float The time it takes a vector query to execute using index scans.
ground_truth_execution_time Float The time it takes the query to run using a sequential scan.

Example

The following example evaluates the recall for a HNSW index and overrides the HNSW.ef_search configuration parameter:

SELECT * FROM vector_assist.evaluate_query_recall(
  ann_query => 'SELECT id FROM items ORDER BY embedding <=> ''[1,2,3]'' LIMIT 10',
  vector_search_configurations => '{"hnsw.ef_search": 30}'
);