This page provides detailed information about all available vector assist functions, and their required and optional parameters.
vector_assist.define_spec
Defines a new vector specification, or vector spec, and returns recommendations necessary to step up the vector workload. This function applies user-provided specifications to generate the recommendations.
Function
CREATE OR REPLACE FUNCTION vector_assist.define_spec(
spec_id TEXT DEFAULT NULL,
table_name TEXT,
schema_name TEXT DEFAULT NULL,
vector_column_name TEXT DEFAULT NULL,
text_column_name TEXT DEFAULT NULL,
vector_index_type TEXT DEFAULT NULL, -- Allowed: 'hnsw', 'ivfflat'
embeddings_available BOOL DEFAULT NULL,
embedding_model TEXT DEFAULT NULL,
num_vectors INT DEFAULT NULL,
dimensionality INT DEFAULT NULL,
distance_func TEXT DEFAULT NULL, -- Allowed: 'cosine', 'ip', 'l2', 'l1'
quantization TEXT DEFAULT NULL, -- Allowed: 'none', 'halfvec', 'bit'
prefilter_column_names TEXT[] DEFAULT NULL,
memory_budget_kb INT DEFAULT NULL, -- In KB
target_recall FLOAT DEFAULT NULL,
target_top_k INT DEFAULT NULL,
tune_vector_index BOOL DEFAULT FALSE, -- Set to true if target_recall is set
)
RETURNS SETOF vector_assist.RECOMMENDATIONS;
Parameters
| Parameter | Required? | Description |
|---|---|---|
spec_id |
Required (Auto-generated) | A unique ID for the vector spec that you define. |
table_name |
Required? | The table name to be used in the vector workload setup. |
schema_name |
Optional | The schema containing the table to be used in the vector workload. The schema is automatically inferred based on the schema search path. |
vector_column_name |
Optional or required | The column name for the column containing the vector embeddings. This column is required if you're using more than one vector column and the text_column_name is not declared. If you're only using
one vector column, then this parameter is optional. |
text_column_name |
Optional or required | The column name for the text column. If your vector workload requires
embeddings generation from a text column, then this parameter is required. This column is required if the vector_column_name parameter is
NULL and there are no other vector columns.This parameter uses the google_ml_integration extension to
generate embeddings from the given text column. |
vector_index_type |
Optional | The type of the vector index. Acceptable values include:
|
embeddings_available |
Optional | A boolean that checks if vector embeddings exist in the selected table.
This field is set to FALSE if no vector columns are detected
and the text_column_name parameter is set. |
embedding_model |
Optional or required | The model ID from
google_ml.models
to be used to generate the embeddings. This field is optional, unless the
embeddings_available parameter is FALSE or
NULL. |
num_vectors |
Optional | The number of vectors in the table. |
dismensionality |
Optional | The dimension of the given vectors. |
distance_func |
Optional | The distance function to be used to compare vector. Acceptable values
include cosine, ip, l2, or
l1. |
quantization |
Optional | The quantization for the vector indexes. Acceptable values include
none, halfvec, or bit. |
prefilter_column_names |
Optional | Creates an index for specified column for prefiltering. This might help improve performance for queries with a high selectivity filter on the column. |
memory_budget_kb |
Optional | The maximum memory (in KB) for index building. |
target_recall |
Optional | The target recall for standard vector queries. |
target_top_k |
Optional | The top-K matching values to retrieve for recall calculation.
This value is used if the target_recall parameter is
specified. |
tune_vector_index |
Optional | Tunes the vector indexes in your workload. If enabled, vector assist
auto-tunes the vector index or search query using the vector spec, and
computes the optimal database and index parameters Acceptable values include
TRUE or FALSE. |
Return value
Returns a table of recommendations that must be applied to set up the requested
vector workload. Each row is a single recommendation that contains an
executable SQL query and a detailed explanation of why to apply the
recommendation. The recommendation can be applied using the
apply_recommendation() function.
The recommendations table contains the following columns:
| Column name | Type | Description |
|---|---|---|
recommendation_id |
Text | The ID of the recommendation. The recommendation is applied using this ID. |
vector_spec_id |
Text | The ID of the vector spec that is associated with the recommendation. |
table_name |
Text | The table name associated with the recommendation. |
schema_name |
Text | The schema name containing the given table. |
query |
Text | The executable SQL query to be run to achieve the outcome of the recommendation. |
recommendation |
Text | The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations. |
applied |
Boolean | Shows whether the recommendation has been applied. |
modified |
Boolean | Shows whether the recommendation has been modified by the user. |
created_at |
Timestamp with time zone | The time when the recommendation was generated in the
timestamp with time zone format. For example,
2024-07-18 09:00:00-08. |
vector_assist.list_specs
Returns the current vector spec for a given table and column.
Function
CREATE OR REPLACE FUNCTION vector_assist.list_specs(
table_name TEXT,
column_name TEXT DEFAULT NULL
)
RETURNS SETOF vector_assist.VECTOR_SPECS
Parameters
| Parameter | Required? | Description |
|---|---|---|
table_name |
Required? | The name of the table that the vector spec is retrieved for. |
column_name |
Optional | The column name to filter the table on before returning the spec. If the column name is specified, then specifications that contain text or vector column names that match this column name are returned. |
Return value
Returns a table of specifications for the given table and optionally, column name.
vector_assist.modify_spec
Modifies an existing vector spec. When the vector spec is modified, the associated recommendations are regenerated based on the new specs.
Function
CREATE OR REPLACE FUNCTION vector_assist.modify_spec(
spec_id TEXT,
table_name TEXT DEFAULT NULL,
schema_name TEXT DEFAULT NULL,
vector_column_name TEXT DEFAULT NULL,
text_column_name TEXT DEFAULT NULL,
vector_index_type TEXT DEFAULT NULL,
embeddings_available BOOL DEFAULT NULL,
num_vectors INT DEFAULT NULL,
dimensionality INT DEFAULT NULL,
embedding_model TEXT DEFAULT NULL,
prefilter_column_names TEXT[] DEFAULT NULL,
distance_func TEXT DEFAULT NULL,
quantization TEXT DEFAULT NULL,
memory_budget_kb INT DEFAULT NULL,
target_recall FLOAT DEFAULT NULL,
target_top_k INT DEFAULT NULL,
tune_vector_index BOOL DEFAULT NULL
)
RETURNS SETOF vector_assist.RECOMMENDATIONS
Parameters
| Parameter | Required? | Description |
|---|---|---|
spec_id |
Required (Auto-generated) | A unique ID for the vector spec that you define. |
table_name |
Required? | The table name to be used in the vector workload setup. |
schema_name |
Optional | The schema containing the table to be used in the vector workload. The schema is automatically inferred based on the schema search path. |
vector_column_name |
Optional or required | The column name for the column containing the vector embeddings. This column is required if you're using more than one vector column and the text_column_name is not declared. If you're only using
one vector column, then this parameter is optional. |
text_column_name |
Optional or required | The column name for the text column. If your vector workload requires
embeddings generation from a text column, then this parameter is required. This column is required if the vector_column_name parameter is
NULL and there are no other vector columns.This parameter uses the google_ml_integration extension to
generate embeddings from the given text column. |
vector_index_type |
Optional | The type of the vector index. Acceptable values include:
|
embeddings_available |
Optional | A boolean that checks if vector embeddings exist in the selected table.
This field is set to FALSE if no vector columns are detected
and the text_column_name parameter is set. |
embedding_model |
Optional or required | The model ID from
google_ml.models
to be used to generate the embeddings. This field is optional, unless the
embeddings_available parameter is FALSE or
NULL. |
num_vectors |
Optional | The number of vectors in the table. |
dismensionality |
Optional | The dimension of the given vectors. |
distance_func |
Optional | The distance function to be used to compare vector. Acceptable values
include cosine, ip, l2, or
l1. |
quantization |
Optional | The quantization for the vector indexes. Acceptable values include
none, halfvec, or bit. |
prefilter_column_names |
Optional | Identifies the columns that are made available for prefiltering in vector search queries. |
memory_budget_kb |
Optional | The maximum memory (in KB) for index building. |
target_recall |
Optional | The target recall for standard vector queries. |
target_top_k |
Optional | The top-K matching values to retrieve for recall calculation.
This value is used if the target_recall parameter is
specified. |
tune_vector_index |
Optional | Tunes the vector indexes in your workload. If enabled, vector assist
auto-tunes the vector index or search query using the vector spec, and
computes the optimal database and index parameters Acceptable values include
TRUE or FALSE. |
Return value
Returns an updated table of recommendations that must be applied to set up the requested vector workload. Each row is a single recommendation that contains an executable SQL query and a detailed explanation of why to apply the recommendation. The recommendation can be applied using the apply_recommendation() function.
The recommendations table contains the following columns:
| Column name | Type | Description |
|---|---|---|
recommendation_id |
Text | The ID of the recommendation. The recommendation is applied using this ID. |
vector_spec_id |
Text | The ID of the vector spec that is associated with the recommendation. |
table_name |
Text | The table name associated with the recommendation. |
schema_name |
Text | The schema name containing the given table. |
query |
Text | The executable SQL query to be run to achieve the outcome of the recommendation. |
recommendation |
Text | The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations. |
applied |
Boolean | Shows whether the recommendation has been applied. |
modified |
Boolean | Shows whether the recommendation has been modified by the user. |
created_at |
Timestamp with timezone | The time when the recommendation was generated. |
vector_assist.get_recommendations
Returns recommendations associated with a specific vector spec_id.
Function
CREATE OR REPLACE FUNCTION vector_assist.get_recommendations (
spec_id TEXT
)
RETURNS SETOF vector_assist.RECOMMENDATIONS;
Parameters
| Parameter | Required? | Description |
|---|---|---|
spec_id |
Required? | Gets recommendations for the specified vector spec_id. |
Return value
Returns a table of requested recommendations.
The recommendations table contains the following columns:
| Column name | Type | Description |
|---|---|---|
recommendation_id |
Text | The ID of the recommendation. The recommendation is applied using this ID. |
vector_spec_id |
Text | The ID of the vector spec that is associated with the recommendation. |
table_name |
Text | The table name associated with the recommendation. |
schema_name |
Text | The schema name containing the given table. |
query |
Text | The executable SQL query to be run to achieve the outcome of the recommendation. |
recommendation |
Text | The explanation for the recommendation, including the expected outcome once the recommendation is applied. This column also contains the reason and rationale for the recommendation. You can use this context to tune the query as necessary and regenerate recommendations. |
applied |
Boolean | Shows whether the recommendation has been applied. |
modified |
Boolean | Shows whether the recommendation has been modified by the user. |
created_at |
Timestamp with timezone | The time when the recommendation was generated. |
vector_assist.apply_recommendation
Applies a single recommendation using the recommendation_id.
Function
CREATE OR REPLACE FUNCTION vector_assist.get_recommendations (
spec_id TEXT
)
RETURNS SETOF vector_assist.RECOMMENDATIONS;
Parameters
| Parameter | Required? | Description |
|---|---|---|
recommenation_id |
Required? | The ID of the vector recommendation to apply. |
Return value
Returns a boolean that confirms if a recommendation was successfully applied
and update the vector_assist.RECOMMENDATIONS table column applied to
TRUE.
If vector assist is unable to apply the recommendation, then it raises an error message on failure.
vector_assist.apply_spec
Applies all recommendations associated with a specific vector spec_id or
table name. This function goes through all recommendations and runs the
vector_assist.apply_recommendation function on
each recommendation.
Must specify either a spec_id or table_name to run function.
Function
CREATE OR REPLACE FUNCTION vector_assist.apply_spec(
spec_id TEXT DEFAULT NULL,
table_name TEXT DEFAULT NULL,
schema_name TEXT DEFAULT NULL,
column_name TEXT DEFAULT NULL -- text_column_name or vector_column_name
)
RETURNS BOOLEAN;
Parameters
| Parameter | Required? | Description |
|---|---|---|
spec_id |
Optional | Applies all recommendations for the given vector spec_id.
|
table_name |
Optional | Applies all recommendations for the given table. |
schema_name |
Optional | The schema containing the specified table. |
column_name |
Optional | Identifies the text_column_name or
vector_column_name to use if the table contains multiple
vector specs. |
Return value
Returns a boolean that confirms if all recommendations were successfully applied
and sets the value in the vector_assist.RECOMMENDATIONS table column
applied to TRUE for all recommendations.
If vector assist is unable to apply the recommendation, then it raises an error message on failure.
vector_assist.modify_recommendation
Modifies the query for a specific recommendation and sets the modified
field in the vector_assist.RECOMMENDATIONS table for the associated
recommendation to TRUE.
Function
CREATE OR REPLACE FUNCTION vector_assist.modify_recommendation(
recommendation_id TEXT,
modified_query TEXT
)
RETURNS BOOLEAN;
Parameters
| Parameter | Required? | Description |
|---|---|---|
recommendation_id |
Required? | The ID of the recommendation to modify. |
modified_query |
Required? | A user-modified SQL query for the recommendation. |
Return value
Returns a boolean that confirms if a recommendation was successfully updated
and sets the vector_assist.RECOMMENDATIONS table column modified to
TRUE.
If vector assist is unable to update the recommendation, then it raises an error message on failure.
vector_assist.generate_query
Generates an optimized vector search query based on the defined vector spec
and search parameters. This function might tune the ef_search value to
meet the set target_recall if applicable.
Function
CREATE OR REPLACE FUNCTION vector_assist.generate_query(
spec_id TEXT DEFAULT NULL,
table_name TEXT DEFAULT NULL,
schema_name TEXT DEFAULT NULL,
column_name TEXT DEFAULT NULL, -- text_column_name or vector_column_name of the spec
search_text TEXT DEFAULT NULL,
search_vector VECTOR DEFAULT NULL, -- e.g. '[1.0,2.0,3.0]'::vector
output_column_names TEXT[] DEFAULT NULL, -- Columns to retrieve, NULL for SELECT *
top_k INT DEFAULT NULL,
filter_expressions TEXT[] DEFAULT NULL,
target_recall FLOAT DEFAULT NULL, -- Inherited from spec, can be overridden
iterative_index_search BOOL DEFAULT NULL
)
RETURNS TEXT; -- Returns the text representing the search query
Parameters
| Parameter | Required? | Description |
|---|---|---|
spec_id |
Optional | Specifies the spec_id to generate the query for. |
table_name |
Optional | Specifies the table name to generate the search query for if the
spec_id isn't provided. If a table contains multiple specs,
then the parameter returns an error. |
column_name |
Optional | Specifics the column name to generate the search query for if the
spec_id isn't provided. If the column contains multiple specs,
then the parameter returns an error. The column_name might be
the text_column_name or the vector_column_name. |
output_column_name |
Optional | The column names to retrieve in the output query. To retrieve all
columns, set this parameter to NULL. |
search_text |
Optional | The search text to generate embeddings for. Requires the
embedding_model in the
vector spec. The embedding is generated using the model from the spec.
You can only set either the search_text or the
search_vector parameter. |
search_vector |
Optional | The vector for the search query. You can only set either the
search_text or the search_vector parameter |
top_k |
Optional | The number of nearest neighbors to return. |
filter_expressions |
Optional | The filter expressions to apply in the search query. The filters can be applied to fields in the table, such as price < 100. |
iterative_index_search |
Optional | Sets whether to perform iterative index search for filtered queries.This parameter overrides the settings in the vector spec. |
target_recall |
Optional | The target recall for the search query only. This parameter
overrides the settings in the vector spec and tunes
ef_search. |
Return value
Returns a text containing the vector search query for the given parameters. This query can be executed or saved to run later.
vector_assist.evaluate_query_recall
Evaluates the recall of the vector index for a given query. This function uses the database and index configurations in a JSON string as inputs.
Function
CREATE OR REPLACE FUNCTION vector_assist.evaluate_query_recall(
IN ann_query text,
IN vector_search_configurations json DEFAULT NULL,
OUT recall float,
OUT ann_execution_time float,
OUT ground_truth_execution_time float,
OUT index_type text)
RETURNS RECORD
Parameters
| Parameter | Required? | Description |
|---|---|---|
ann_query |
Required? | The SQL query for which recall needs to be evaluated. This query
should be a pgvector ANN query. |
vector_search_configurations |
Optional | The configurations that can be set for the ANN query. This parameter must be in JSON format. |
Return value
Returns a table that evaluates the recall of the vector index for the given query.
The table contains the following columns:
| Column name | Type | Description |
|---|---|---|
recall |
Float | The percentage of vectors that the index returns, which are true nearest neighbors. This metric is used to quantify search quality. This function lets you tune the parameters to return the expected vector query recall results. |
ann_execution_time |
Float | The time it takes a vector query to execute using index scans. |
ground_truth_execution_time |
Float | The time it takes the query to run using a sequential scan. |
Example
The following example evaluates the recall for a HNSW index and overrides the
HNSW.ef_search configuration parameter:
SELECT * FROM vector_assist.evaluate_query_recall(
ann_query => 'SELECT id FROM items ORDER BY embedding <=> ''[1,2,3]'' LIMIT 10',
vector_search_configurations => '{"hnsw.ef_search": 30}'
);